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In the beginning of the 20th century various paradoxes (Russell, Skolem, Fraenkel,..)
resulted to a crisis in the foundations of mathematics. Hilbert put forward a new
proposal for the foundation of mathematics which has come to be known as Hilbert’s
Program. In 1899 Hilbert had already published Grundlagen der Geometrie where he
provided the first axiomatization of elementary geometry that was sufficient to prove
all statements in Euclid’s Elements, without any hidden assumptions. Hilbert’s pro-
gram wanted a similar formalization of all of mathematics in axiomatic form, to-
gether with a proof that this axiomatization of mathematics is consistent. During
the second half of 1920s there was hope in some mathematical circles (see, Interna-
tional Congress of Mathematicians in Bologna, 1928) that they were really close in
finding a complete and consistent axiomatizations for classical mathematical theo-
ries such as real analysis and arithmetic. By 1931 and due to Gödel we knew already
that these beliefs were rooted in false optimism.

Consider for example the universe N = (N, 0,≤,+, ∗) of all natural numbers to-
gether with structure enough to allow us express (in first order logic) basic arithmetic
properties, such as the fact that there are infinitely many prime numbers:

∀x∃p∀a, b (x ≤ p) ∧
(
(a ∗ b = p) =⇒ ((a = p) ∨ (b = p))

)
To resolve successfully Hilbert’s program for arithmetic one would need to find a
collection A of statements (axioms) which are consistent and suffice in proving all
statements which are true in N . Gödel’s 1st incompleteness theorem says that there
is no ”computable” such collection A. It is usually stated as follows:

Theorem 1. Let A be a collection of arithmetic statements so that

(1) A is recursive;
(2) A is consistent, i.e., does not prove ¬(0 = 0);
(3) A proves enough elementary arithmetic statements, e.g., all Robinson’s ax-

ioms.

Then there is an arithmetic statement which can neither be proved nor disproved
from A.

This statement is actually a slight strengthening of the original Gödel’s incom-
pleteness theorem due to Rosser. The original weak statement replaces (2) by the
following stronger assumption (to be explained later on)

(2’) A is ω-consistent.

The even weaker statement which replaces both and (2) and (3) by the following
is due to Tarski:

(4) A is correct, i.e., all statements provable from A are true in (N, 0,≤,+, ∗).
It will be instructive to start by providing a short proof of Tarski’s theorem. Later,

after we develop more recursion-theoretic machinery we will prove Theorem 1 and
provide more applications.
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1. Incompleteness in a nutshell

Let M be some machine which prints out one after the other various expressions
in the alphabet:

¬ P N ( )

By an expression we mean any finite non empty string such as (()PN). Any
expression that is eventually going to be printed out of M we call it printable. Let
X be some expression. The norm of X is the expression X(X). For example, the
norm of ((N is ((N(((N). A sentence is any expression of the following four forms

P (X), PN(X), ¬P (X), ¬PN(X),

where X is any expression. We assign a truth value to all sentences. We say that
P (X) is true if X is printable. We say that ¬P (X) is true if X is not printable. We
say that PN(X) is true if the norm of X is printable and we say that ¬PN(X) is
true if the norm of X is not printable.

Definition 2. We say that M is correct if every printable sentence is true. We say
that M is complete if for every true sentence is printable.

Theorem 3. There is no machine M that is both complete and correct.

Proof. The idea is to find a sentence which asserts its own non-printability. For
example consider the sentence ¬PN(¬PN)...

�

Tarski’s theorem
Here we derive a weak form of Gödel’s incompletness theorem after establishing

Tarski’s “undefinability of truth” result. The syntax we are going to use in non-
standard and is not going to be used anywhere else (except in HW1). The reason we
use it is that it simplifies significantly some technical details and allows for a quick
proof of Tarski’s theorem. As in Section 1 we will define an alphabet and among the
various expressions we are going to distinguish certain ”well formed” ones which we
are going to call sentences. We will then assign a truth-value to these sentences by
interpreting them as statements about the natural numbers.

2. Alphabet

We will use an alphabet consisting of the following 13 symbols

0 ′ ( ) p ⊕ v ¬ ⇒ ∀ = ≤ |
We are now going to introduce some abbreviations for certain expressions in the
above alphabet. Of course, when working formally, all abbreviations should be
replaced with the original expressions.

0, 0′, 0′′, . . . will be called numerals and we will abbreviate them by 0̂, 1̂, 2̂, . . ..
p, p⊕, p⊕⊕ will be abbreviated by +, ∗,E
(v⊕), (v⊕⊕), (v⊕⊕⊕), . . . will be called variables and will be abbreviated by v1, v2, v3, . . .
The last symbol | will be used only in the HW.
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3. Terms and formulas

By a term we mean any expression that is included in the smallest collection of
expressions which

(1) contains all numerals and variables;
(2) contains any expressions of the form (t + s), (t ∗ s), (tEs), t′ where s, t are

themselves terms.

An atomic formula is any expression of the form t = s or t ≤ s, where s, t are
any terms. By a formula we mean any expression that is included in the smallest
collection of expressions which contains

(1) all atomic formulas;
(2) any expression of the form ¬ϕ where ϕ is a formula;
(3) any expression of the form (ϕ =⇒ ψ), where ϕ, ψ are formulas;
(4) any expression of the form ∀vnϕ, where vn is a variable and ϕ is a formula.

4. Sentences

For any term t we can generate its syntactic tree in the obvious way. Leaves of this
tree are either numerals or variables. Any leaf of the syntactic tree of t that is labeled
by vn is an occurrence of vn in t. All occurrences of vn in t are free occurrences.
Similarly all occurrences of vn in atomic formulas are free occurrences. Inductively
the free occurrences of vn in (ϕ =⇒ ψ) are the free occurrences of vn in ϕ and the
free occurrences of vn in ψ; the free occurrences of vn in ¬ϕ are the free occurrences
of vn in ϕ; vn does not occur freely in ∀vnϕ; and free occurrences of vn in ∀vmϕ are
those of ϕ, if n 6= m.

A sentence σ is any formula in which no variable occurs freely.

5. Assigning truth-values

So far everything took place on the syntactic level. Now we can use the natu-
ral numbers and the actual operations of successor, addition, multiplication, and
exponentiation to give meaning to the well formed expressions.

A term t is called closed if no variable occurs free in t. To each closed term we
assign a unique natural number as follows: to the numerals 0̂, 1̂, 2̂, . . . we assign the
actual numbers 0, 1, 2, . . .; if n has been assigned to t and m has been assigned to s
then we assign n+1, n+m,n∗m,nm to the terms t′, (t+s), (t∗s), (tEs) respectively.

Example. the term ((0′′′p0′)p⊕0′′)′ is assigned the number 9.
Let formula ϕ be a formula m̂ is a numeral, we denote by ϕ(m̂ vn) the formula

attained by ϕ after we replace all free occurrences of vn in ϕ by the numeral m̂.
We define a sentence to be true inductively:

(1) t = s is true if and only if t, s are closed the number assigned to t equals to
the one assigned to s;

(2) t ≤ s is true if and only if t, s are closed the number assigned to t is less than
or equal to the one assigned to s;
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(3) ¬σ is true if and only if σ is not true;
(4) (σ ⇒ τ) is true if and only if either σ is not true or both σ, τ are true;
(5) ∀vnϕ is true if and only if for all numerals m̂, we have that ϕ(m̂  vn) is

true.

6. Definable relations of numbers

Let R be a subset of Nk and ϕ be a formula whose free variables are vn1 , . . . , vnk
.

We say that ϕ defines R if for all (m1, . . . ,mk) ∈ Nk we have that

ϕ(m̂1  vn1 , . . . , m̂k  vnk
) is true ⇐⇒ (m1, . . . ,mk) ∈ R

The set of even numbers is definable for example by the formula

¬∀v2¬(v1 = 0′′p⊕v2)

Later in this class we will study more the relationship between definable relations
and recursive/recursively enumerable relations. We will see for example that if we
dropped p⊕⊕ from the alphabet, restricting this way our ability to refer directly to
exponentiation, the definable sets would be the same. A function f : Nk → N is
definable if its graph is definable as a relation.

7. Concatenation in base b

For every b ≥ 2 we define a function (m,n) 7→ m?b n from N2 to N as follows: let
lb(n) be the number of digits one needs to express n in base b notation and set

m ?b n := m ∗ blb(n) + n

Informally m?bn is the number whose base b expression is attained by concatenating
the base b expression of m on the left of the base b expression of m.

Besides the usual base 10 we will also consider the b = 13 case. We will use the
following primitive digits for expressing numbers in base 13 notation:

0 1 2 3 4 5 6 7 8 9 α β γ

Lemma 4. The relation x ?b y = z is definable for every b ≥ 2.

Proof. Notice that blb(n) is simply the smallest power of b that is greater or equal to
n. We will show that the relation consisting of all points of the form (n, blb(n)) is
definable.

The set of all numbers which are powers of b is definable by the formula Powb(x) =

∃y(x = (b̂Ey)), or more formally,... (left to the reader)
The collection of all pairs (x, y) with the property that y is the smallest power of

b greater or equal to x is definable by the formula

s(x, y) = Powb(y) ∧ (x ≤ y) ∧ (∀y((z < y) ∧ Powb(z))⇒ (z < x)),

or more formally... But then x ?b y = z is definable by the formula

∃as(y, a) ∧ (z = ((x ∗ a) + y)
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�

Notice that if m,n, k are positive natural numbers then (m?bn)?bk = m?b (n?bk).
The same fails however when n is 0, e.g. (3 ?10 0) ?10 1 = 310 6= 31 = 3 ?10 (0 ?10 1).
Whenever we write m ?b n ?b k from now on, it will be implicit that the parenthesis
is on the left pair (this way we do not lose information).

Lemma 5. The (k + 1)-ary relation x1 ?b x2 ?b . . . ?b xk = y is definable.

Proof. Exercise. �

8. Gödel-Quine numbering

Under the interpretation of our language on N we can can use formulas and
sentences to talk about properties of numbers. Gödel’s idea was to ”coordinatize”
the syntax using natural numbers and turn, this way, our language to implicitly talk
about syntactic properties of the language as well as metamathematical properties
of the interpretation we fixed. The setup we chose will allow us to chose a different
”coordinatization” than Gödel’s original one which will significantly simplify our
proofs. This ”coordinatization” is due to Quine.

To each expression E in the above fixed language we are going to assign a number.
Since our alphabet has 13 symbols it will be convenient to express numbers in base
b = 13 to simplify the coding. We will denote m?13n simply by m?n. Every symbol
in out alphabet is assigned a number according to the following table.

0 ′ ( ) p ⊕ v ¬ ⇒ ∀ = ≤ |
1 0 2 3 4 5 6 7 8 9 α β γ

Let E− be the collection of all expressions which on the left do not end with ′

then to each E in E− we can assign the number whose representation in base 13 is
the one attained by E if we replace every symbol with the corresponding digit in
the above table. For example the expression ))0′| is assigned the number 3310γ (in
base 13). We denote by En the expression that corresponds to the number n in the
above coding.

Remark 6. We have:

(1) the map n 7→ En defines a bijection between N and E−;
(2) the numeral m̂ is assigned the number 13m (here we used base 10).
(3) If Ez is the expression we get if we concatenate Ex to the left of Ey, i.e.,

Ez = ExEy then z = x ? y.

The only properties we will use about this coordinatization are summarized in
the next corollary.

Corollary 7. The following two relations are definable:

(1) Conc(z, x, y) ⊆ N3 which states that z is the Gödel-Quine number of the
expression ExEy.
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(2) Numeral(x, y) which states that Ey is the numeral x̂.

Our task now is to see whether various syntactic and metamathematical properties
generate definable relations under the Gödel-Quine coding. In particular consider
consider the following subsets of N:

(1) all natural numbers which correspond to sentences;
(2) all natural numbers which correspond to true sentences;
(3) all natural numbers which correspond to provable sentences.

So far we haven’t defined what the last set is. This will be done in HW1. There
you will prove that the first and last set is indeed definable. Regarding the second
set we will see now that this is not the case.

9. Tarski’s Theorem

Let #T be the collection of all natural numbers n for which the expression En
is a true sentence. Assume moreover that we have established a proof system for
arithmetic and we denote by #P the collection of all natural numbers n for which the
expression En is a provable sentence. In this subsection we will prove the following
Theorem due to Tarski.

Theorem 8 (Tarski). The set #T is not definable.

Before we proceed to the proof of Tarski’s theorem we point out that it imme-
diately implies the following incompleteness theorem. We will later see that every
recursive set is definable in the sense of this section.

Corollary 9 (Gödel-Tarski). If the proof system is correct and #P is definable then
there exists a true but non-provable sentence.

Non-constructive proof. For a constructive argument we the end of this section.
Correctness implies that #P ⊆ #T . But we also have #P 6= #T since #P was

assumed to be definable and #T is not. Hence we have #P ( #T and therefore
there is a sentence true but not provable. �

Let A be a subset of N. A Gödel sentence σ for A is sentence with the property
that

σ is true ⇐⇒ GQ#(σ) ∈ A.
where GQ#(σ) stands for the Gödel-Quine number of σ. In other words σ can be
thought as if it is stating GQ#(σ) ∈ A. Most incompleteness arguments rely on
cooking up some appropriate Gödel sentence. Gödel’s method for constructing such
sentences depended in showing that there is definable map sub: N × N → N with
the property that if n is the Gödel number of a formula ϕ having v1 as its only
free variable then sub(m,n) is the Gödel number of the formula ϕ(m̂ v1). Using
a trick due to Tarski we can simplify Gödel original method in the context of the
Gödel-Quine numbering.
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Two formulas ϕ, ψ which have the exact same collection of free variables vn1 , . . . , vnk

are called equivalent if for all numerals m̂1, . . . m̂k we have that the sentence
ϕ(m̂1  vn1 , . . . , m̂k  vnk

) is true if and only if ψ(m̂1  vn1 , . . . , m̂k  vnk
)

is true. In particular, two sentences σ, τ are equivalent if σ is true if and only if τ
is true. Let E now be an expression and let m be a natural number. We define a
new expression, which we denote by E[m̂], by setting

E[m̂] := ∀v1(v1 = m̂⇒ E)

Lemma 10. If ϕ is a formula having v1 as its only free variable then for every
m ∈ N we have that ϕ(m̂ v1) and ϕ[m̂] are equivalent.

Proof. ϕ[m̂] is true iff
for every n ∈ N we have that n̂ = m̂⇒ ϕ(n̂ v1)) is true iff
for every n ∈ N we have that either ¬n̂ = m̂ is true or ϕ(n̂ v1)) is true iff
ϕ(m̂ v1)) is true. �

Let now subT : N × N → N be the map that sends the pair (m,n) to the Gödel-
Quine number of the expression En[m̂].

Lemma 11. The map subT is definable.

Proof. We compute the Gödel-Quine number of En[m̂]. Recall the correspondence
(in base b = 13):

∀ ( v ⊕ ) ( ( v ⊕ ) = m̂ ⇒ En )
9 2 6 5 3 2 2 6 5 3 α GQ#(m̂) 8 GQ#(En) 3

But GQ#(En) = n and GQ#(m̂) is simply 13m in base b = 10. Let c be the
natural number which in base 13 its expression is 9265322653α and notice that

subT(m,n) = k ⇐⇒
∃x(x = 13m ∧ k = c ?13 x ?13 8 ?13 n ?13 3)

By Lemma 5 it is easy to see now that the relation subT(m,n) = k is definable by
turning the above to the corresponding formula (replace ∃ with ¬∀¬, replace m,n
and k with variables v1, v2 and v3, etc.) �

Let now d : N→ N be the diagonal of subT. That is

d(n) = subT(n, n) = GQ#(En[n̂])

is the Gödel-Quine number of the expression En[n̂]. For every A ⊆ N we set

d−1(A) := {m ∈ N : d(m) ∈ A}.
Lemma 12. If the set A ⊆ N is definable then d−1(A) is definable.

Proof. Notice that

m ∈ d−1(A) ⇐⇒ ∃y(d(m) = y ∧ y ∈ A).

�
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Lemma 13. If A is definable then there is a Gödel sentence for A.

Proof. Let ϕ be a formula whose only free variable is v1 and which defines d−1(A).
Let nϕ be the Gödel-Quine number of ϕ. Consider the sentence ϕ[n̂ϕ]. We claim
that this is a Gödel sentence for A. To see this notice that

ϕ[n̂ϕ] is true ⇐⇒ nϕ ∈ d−1(A) ⇐⇒ d(nϕ) ∈ A
But d(nϕ) is the Gödel-Quine number of ϕ[n̂ϕ]. �

We can now finish the proof of Tarski’s theorem.

Proof of Theorem 8. If the set #T of all Gödel-Quine numbers of true sentences was
definable then the set #F of all Gödel-Quine numbers of false sentences, being the
complement of #T , would be definable as well. But then by the previous lemma we
would have a Gödel sentence σ for #F which gives a contradiction because then

σ is true ⇐⇒ GQ#(σ) ∈ #F ⇐⇒ σ is false

where the first equivalence is because σ is the Gödel sentence of #F , and the second
equivalence is because of the definition of #F . �

Using Lemma 12 we can provide a “constructive” proof of Corollary 9.

Another proof of Corollary 9. Since #P is definable then the set (#P)c of all Gödel-
Quine numbers of sentences which are not provable is definable. By Lemma 12 we
can find be a formula ϕ whose only free variable is v1 and which defines d−1((#P)c).
Let nϕ be the Gödel-Quine number of ϕ. Consider the sentence ϕ[n̂ϕ]. We claim
that ϕ[n̂ϕ] is true but not provable. We have that

ϕ[n̂] is true ⇐⇒ ϕ(n̂ v1) is true

and since ϕ defines d−1((#P)c) the latter is equivalent to d(nϕ) ∈ (#P)c which by
the definition of d it is equivalent to ϕ[n̂] being not provable. To summarize, we just
showed that

ϕ[n̂] is true ⇐⇒ ϕ[n̂] is not provable

We now have to show that it is both true and not provable. But it this is not the
case then ϕ[n̂] would be both not-true and provable which contradicts the fact that
the proof system was assumed to be correct.

�

10. An abstract form of the argument

The previous argument is applicable in any setup where we can isolate the follow-
ing structure:

(1) E is an enumerable set which we call expressions ;
(2) S ⊆ E which we call sentences ;
(3) P ⊆ S which we call provable sentences ;
(4) Φ ⊆ E which we call formulas in one free variable;
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(5) a function E × N→ E denoted by (E, n) 7→ E[n] so that ϕ[n] ∈ S whenever
ϕ ∈ Φ;

(6) T ⊆ S which we call true sentences ;

Notice that every
Let A ⊆ N and ϕ ∈ Φ. We say that ϕ defines A if

n ∈ A ⇐⇒ ϕ[n] ∈ T .

Let g : E → N be an 1 − 1 enumeration of the expressions and write En for the
unique expression with g(En) = n. Let d : N→ N be the map with d(n) = g(En[n]).

Theorem 14 (Abstract form of Gödel-Tarski). If d−1
(
g(S \ P)

)
is definable and

P ⊆ T then P 6= T .

Proof. Exercise. �

11. Discussion

We used the structure (N, 0,≤, S,+, ∗,E)
However, given (N,+, ∗) we can define (N, 0, S,+, ∗,≤).
In fact we have enough strength to define E as well.
What about (N, 0, 1,+)?
It is known as Presburger arithmetic and it admits complete and recursive axiom-

atization (no self-reference is possible).
Some more recursion theory

12. Oracles

Recall that the collection R of all recursive functions is the smallest collection of
partial maps f : Nk → N, k ≥ 0 which contains

(1) the constant maps c0 : Nn → N with (x1, . . . , xn) 7→ 0;
(2) the successor map S : N→ N with x 7→ x+ 1;
(3) the projections πj : Nn → N with (x1, . . . , xn) 7→ xj, where j ≤ n;

and which is closed under the operations

(i) of composition: given g : Nn → N and h1, . . . , hn : Nl → N in R then the map
f : Nl → N is in R, where

f(x1, . . . , xl) = g(h1(x1, . . . , xl), . . . , hn(x1, . . . , xl))

(ii) of primitive recursion: given g : Nn → N and h : Nn+2 → N in R, the map
f : : Nn+1 → N is in R, where

f(0, x1, . . . , xn) = g(x1, . . . , xn), and

f(n+ 1, x1, . . . , xn) = h(n, f(n, x1, . . . , xn), x1, . . . , xn).
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(iii) of minimalization: given g : Nn+1 → N in R then the map f : Nn → N is in R,
where

f(x̄) = µy[g(y, x̄) = 0],

where f(x̄) ↓ iff there is y so that g(y, x̄) = 0 and for all z < y we have that
g(z, x̄) ↓.

Definition 15. An oracle is any total map α : N→ N.

Let F1, . . . , Fn be any total functions with Fi : Nni → N. We say that a partial
map f is recursive in F1, . . . , Fn and we write f ∈ R(F1, . . . , Fn) if f is in the
smallest collection defined as R is defined above but which together with the maps
in (1),(2), (3) it additionally contains F1, . . . , Fn. The interesting case is of course
when Fi 6∈ R.

Lemma 16. For any F1, . . . , Fn as above there is some unary α : N→ N so that

R(F1, . . . , Fn) = R(α).

Reminder. We have a primitive recursive 〈 〉 :
⋃
n≥0 Nn → N which codes all

finite sequences with natural numbers 〈∅〉 = 0, and if pi is the i-th prime (with
p0 = 2) we have

〈(n0, . . . , nk)〉 = Πk
i=0p

n0+1
i .

Recall that the subset Seq(s) of N consisting of all numbers numbers s which are
in the range of 〈 〉 is primitive recursive. We have a primitive recursive decoding
function (s)i where if Seq(s) and ni+1 is the exponent of pi in the above factorization
then (s)i = ni and in all other cases (s)i = 0.

If we want to code/decode Nk with N, for a fixed k, there are “direct” and bijective
primitive recursive ways of doing so.

Proof of Lemma 16. We can assume without loss of generality that every F = Fi is
unary by replacing F : Nk → N with F : N→ N with

F (s) = F ((s)0, . . . , (s)k−1)

Given now unary F 1, . . . F n, we can code them in one map α : N→ N with

α(n) = 〈F 1(n), . . . F n(n)〉

�

Given α : N→ N we denote by α the map N→ N given by

α(n) = 〈α(0), . . . , α(n− 1)〉.

Notice that α(n) is primitive recursive α(n+ 1) = 〈α(n) ∗ 〈α(n)〉〉 where recall that

s ∗ t = 〈n0, . . . , nk,m0, . . . ,ml〉, if s = 〈n0, . . . , nk〉, t = 〈m0, . . . ,ml〉,

and s ∗ t = 0 otherwise.
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Lemma 17. A partial k-ary map f is recursive in α if and only if there is a primitive
recursive relation P ⊆ Nk+2 so that:

f(x̄) = y ⇐⇒ ∃nP (x̄, y, α(n)).

Proof. ⇐ Assume that f is a partial k-ary map whose graph is defined by some
primitive recursive P as above. Then

f(x̄) =
(
µs[P

(
x̄, (s)0, α((s)1)

)
]
)

0

⇒
Notice that we can recover n and α(n) from α(n) using primitive recursive func-

tions:
(i) n = length(α(n))
(ii) α(n) = y iff ∃z ≤ α(n) (length(α(z)) = n+ 1 ∧ y = (α(z))n).

Step 1. Check that all maps (1), (2), (3) are of this form.
Step 2. To check composition we can assume for simplicity that f(x) = g(h(x)).

Inductively we assume that h(x) = y ⇐⇒ ∃nP (x, y, α(n)) and g(y) = z ⇐⇒
∃mP ′(y, z, α(m)) but then

f(x) = z ⇐⇒ ∃y
(
h(x) = y ∧ g(y) = z

)
⇐⇒

⇐⇒ ∃y
(
∃nP (x, y, α(n)) ∧ ∃mP ′(y, z, α(m))

)
⇐⇒ ∃y∃n∃m

(
P (x, y, α(n)) ∧ P ′(y, z, α(m))

)
⇐⇒ ∃s(s = 〈y, n,m〉)

(
P (x, (s)0, α((s)1)) ∧ P ′((s)0, z, α((s)2))

)
It is not difficult to see that the last expression can be brought in the form ∃s Q(x, z, α(s))
where Q is a primitive recursive relation. For example one has to find a primitive
recursive function p : N → N with the property that p(α(s)) = α((s)2). for every
function α : N→ N. For that use (i), (ii) above.

Step 3. Primitive recursion left as exercise.
Step 4. To check minimalization we can assume again without loss of generality

that f(x) = µt[g(x, t) = 0] and that g(x, t) = y ⇐⇒ ∃nP (x, t, y, α(n)) with P
primitive recursive. But then

f(x) = y ⇐⇒
(
g(x, y) = 0 ∧ (∀z < y g(x, z) > 0)

)
⇐⇒ ∃nP (x, y, 0, α(n)) ∧

(
∀z < y∃w(w > 0 ∧ ∃m P (x, y, w, α(m)))

)
⇐⇒ ∃nP (x, y, 0, α(n)) ∧ ∃w∃m

(
∀z < y((w)z > 0 ∧ P (x, y, (w)z, α((m)z)))

)
⇐⇒ ∃l = 〈n,w,m〉(Primitive Recursive Stuff)

�

Recall that if A ⊆ Nn then we can “identify” A with its characteristic function
χA. Recall also that the convention is that χA(x) = 0 if and only if x ∈ A.
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Theorem 18 (Kleene’s normal form relative to α). There is a total, primitive
recursive function U : N→ N and a primitive recursive relation T ⊆ N3 so that that
for each total unary function α, every k-ary partial recursive function with respect
to α has the form

U
(
µn
[
T (e, 〈x1, . . . , xk〉, α(n))

])
, for some e.

Proof. Recall that there exists a primitive recursive relation T̂ ⊆ N so that the
relation

∃mT̂ (e, 〈x1, . . . , xk〉,m)

is universal for recursively enumerable relations, i.e., for every recursively enumerable
R(x1, . . . , xk) there is e so that R equals the above relation for this fixed e.

Let now f : Nk → N be partial recursive with respect to α. By the previous lemma
we have primitive recursive relation P so that:

f(x̄) = y ⇐⇒ ∃nP (x̄, y, α(n)).

Hence for some e we have that

f(x̄) = y ⇐⇒ ∃n∃mT̂ (e, 〈x1, . . . , xk, y, α(n)〉,m)

⇐⇒ ∃l T̂ (e,
〈
x1, . . . , xk, y, α((l)0)

〉
, (l)1)

⇐⇒ ∃l T̃ (e,
〈
x1, . . . , xk, y, α(l)

〉
),

where T̃ (e,
〈
x1, . . . , xk, y, u

〉
) := T̂ (e,

〈
x1, . . . , xk, y, p(u)

〉
, q(u)), and p, q are the ob-

vious primitive recursive functions. Thus

f(x1, . . . , xk) =
(
µn [T̃ (e,

〈
x1, . . . , xk, (n)0, α((n)1)

〉
)]
)

0
=

= U
(
µn [T (e,

〈
x1, . . . , xk, α(n)

〉
)]
)
,

where U(z) = (z)0 and T (e,
〈
x1, . . . , xk, z

〉
) = T̃ (e,

〈
x1, . . . , xk, r(z), s(z)

〉
), for the

obvious primitive recursive maps r, s. �

Corollary 19 (Kleene’s enumeration theorem.). For every α, the class R(α) of
partial recursive maps with respect to α has the enumeration property.

Proof. By Kleene’s Theorem the map ϕαk : Nk+1 → N with ϕαk (e, x1, . . . , xk) =
U
(
µn
[
T (e, 〈x1, . . . , xk〉, α(n))

])
is in Rk+1(α) and it is universal for Rk(α). �

A relation R(x̄) is recursive in α if its characteristic function is. It is recursively
enumerable in α if there is some recursive in α relation P (n, x̄) so that R(x̄) =
∃nP (n, x̄).

Everything that was proved in Math117a about recursively enumerable relations
has a relative to α version. In particular:
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Theorem 20. There is a primitive recursive relation T (e, x, u) so that for all α and
all P ⊆ N we have that P is recursively enumerable in α if and only if there is e ∈ N
so that

P (x) ⇐⇒ ∃nT (e, x, α(n)).

13. Turing degrees

For α, β : N→ N total maps we say that α ≤T β if and only if α is recursive in β,
i.e. {rec in α} ⊆ {rec in β}

Think that β is a stronger oracle (knows more) than α.
α ≤T α
α ≤T β and β ≤T γ implies α ≤T γ.
α ≡T β iff α ≤T β and β ≤T α
The equivalence class [α]T = {β : α ≡T β} of α under ≡T is the Turing degree

of α.
The collection D = {[α]T : α ∈ NN} of all Turing degrees forms a partial ordering

under ≤T .
We will now provide an alternative description of ≤T . We first need to fix some

notation.
N<N = {s : N→ N | dom(s) = {0, . . . , n− 1}, n ∈ N}. We write s = (s0, . . . , sn−1)

for any element s ∈ N<N, so that si ∈ N. We also denote by |s| the length of
s which in the above case is n. We write s ⊆ t if t = (t0, . . . , tn−1) extends
s = (s0, . . . , sm−1), i.e., if ti = si for all i ≤ m − 1. If k ≤ |s| then we write s|k
for (s0, . . . , sk−1). We extend this notation to elements α of NN, in the obvious way,
so that α|k ∈ Nk. Notice that N<N =

⋃
nNn has a natural tree structure under ⊆

where each Nn is a “horizontal level.”

Definition 21. A (total) map ϕ : N<N → N<N is called monotone if

s ⊆ t =⇒ ϕ(s) ⊆ ϕ(t).

Given any such monotone map, we define a partial map ϕ∗ : NN → NN by

ϕ∗(α) =
⋃
n

ϕ(α|n),

whenever the length |ϕ(α|n)| grows to infinity. Write ϕ∗(α) ↓ if and only if ∀m∃n|ϕ(α|n)| >
m.

Definition 22. We say that ϕ is computable if ϕ : 〈s〉 7→ 〈ϕ(s)〉 is computable.

Theorem 23. Let α, β be two oracles. Then α ≤T β if and only if there is a
computable monotone ϕ : N<N → N<N so that ϕ∗(β) = α.

Proof. (⇐). Let ϕ : N<N → N<N be computable so that ϕ∗(β) = α. We have that

α(k) = ϕ(β|l
)
(k), where l = µn[|ϕ(β|n)| > k]
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In other words, recalling the notation β(n) = 〈β|n〉 = 〈β(0), β(1), . . . , β(n− 1)〉, we
have that

α(k) =

(
ϕ
(
β(µn

[
lenght(ϕ(β(n))) > k

]
)
))

k

(⇒). Assume that α ≤T β. Then by Theorem 18 there are primitive recursive
U,R so that for some fixed e we have

α(k) = U(µn
[
R(e, k, β(n))

]
).

We will find now some ϕ = ϕe so that ϕ∗(β) = α.
To compute ϕ(s) the rough idea is to plug 〈s|n〉 ∈ N<N in the place of β(n). Of

course even when k << |s| there is no guarantee that there is some n > 0 so that
R(e, k, 〈s|n〉) = 0. To accommodate for this problem in a way that will not ruin
monotonicity or ϕ∗(β) = α we will modify things as follows. First given s we will
predetermine the length of |ϕ(s)| by defining the following function:

lengthϕ(s) = µ l [(l < |s|) ∧
(
∀k ≤ l ∃n < |s|R(e, k, 〈s|n〉) = 0

)
]

We will now send s to a sequence ϕ(s) with |ϕ(s)| = lengthϕ(s) so that for all
k < lengthϕ(s) we have

ϕ(s)(k) = U(µn ≤ |s|
[
R(e, k, 〈s|n〉)

]
).

It is left to the reader to confirm that ϕ is monotone computable and ϕ∗(β) = α. �

A consequence of the above proof is that we have a sequence ϕ0, . . . , ϕe, . . . of
recursive monotone maps so that

α ≤T β ⇐⇒ ∃e(ϕ∗e(β) = α)

In fact it is not difficult to see that this is a “uniformly recursive” family, i.e., the
map ϕ(e, s) = ϕe(s) is recursive!

Theorem 24. (D,≤T ) is not a total order, i.e., there are α, β so that neither
α ≤T β, nor β ≤T α.

Proof. We will construct α, β as the limits of the respective sequences sn, tn ∈ N<N.
For every n we will make sure that |sn| = |tn| = ln with ln strictly increasing and so
that sn ⊆ sn+1, tn ⊆ tn+1. At the end we set α =

⋃
n s

n and β =
⋃
n t

n.
At the n-th stage we will make sure that sn, tn are selected so that if n = 2e + 1

then any extension of sn to some α is not in the image of any extension β of tn

under ϕ∗e. If n = 2e we will make sure that any extension of tn to some β is not in
the image of any extension α of sn under ϕ∗e.

Set s−1 = t−1 = ∅ and l−1 = 0. Assume now that for n ≥ 0 we have defined
sn−1, tn−1, ln−1. We define sn, tn, ln.

Case n = 2e. We will make sure that ϕ∗e(α) 6= β.
Subcase 1. If for every s that extends sn−1 we have that ϕe(s) does not strictly

extend tn−1, then let sn and tn be any strict extensions of sn−1 and tn−1 of equal
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length and set ln = |sn|. Any α, β extending sn, tn will have the property that
ϕ∗e(α)|ln 6= tn = β|ln.

Subcase 2. If there is some s extends sn−1 so that ϕe(s) also strictly extends tn−1

then set sn = s, ln = |sn| and pick tn be any extension of tn−1 with |tn| = ln so that
tnln−1

6=
(
ϕe(s

n)
)
ln−1

. Again this guarantees that any α, β extending sn, tn will have

the property that ϕ∗e(α)|ln 6= tn = β|ln.
Case n = 2e + 1. We do the same thing with the roles of α and β exchanged so

that ϕ∗e(β) 6= α, for any α, β extending sn, tn. �

Here are some properties of the poset (D,≤T ).

• There is a smallest element which we denote by
˜
0 and which consists of all

recursive oracles.
• For every

˜
a,

˜
b there is a least upper bound

˜
a ∨

˜
b which we attain by picking

representatives α, β with [α]T =
˜
a, [β]T =

˜
b and setting

˜
a ∨

˜
b = [n 7→ 〈α(n), β(n)〉].

• For every
˜
a there are only countably many

˜
b with

˜
b ≤T

˜
a. To see this notice

that we have countably many reductions (e.g. (ϕe)e in previous Theorem).
• As a consequence the set {

˜
b :

˜
b ≥T

˜
a}, known as the cone above

˜
a, is un-

countable for every
˜
a.

• If (
˜
an) is any sequence of Turing degrees then there is some

˜
a above all of

them. Simply let αn with [αn]T =
˜
an and set

˜
a = [α]T , where α(〈n,m〉) =

αn(m).
• For every

˜
a there is a A ⊆ N so that

˜
a = [χA]T .

This last property allows us to think of oracles as subsets of N, or equivalently,
points in the Cantor space 2N. Given this we have a somewhat canonical Turing
degree above

˜
0: the degree corresponding to the set H ⊆ N coding the halting

problem

H(e) ⇐⇒ ∃nT (e, e, n).

The denote [χH ] by
˜
0′ and we call it the Turing jump of

˜
0. In fact

˜
a 7→

˜
a′ is a well

defined operation uniformly on (D,≤T ).

14. Reductions and Turing jump

Let A,B ⊆ N. We say that that A is reducible to B if there is a computable
and total map f : N→ N so that

n ∈ A ⇐⇒ f(n) ∈ B.

In other words, f−1(B) = A, equivalently χA = χB ◦ f . We write A ≤R B. Such
reductions are often called many to one reductions since we do not demand
injectivity of f . It is immediate that ≤R refines ≤T in that:

A ≤R B =⇒ A ≤T B.
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The converse is false since, for example the complement Hc ⊆ N of the halting
problem H does not reduce to H since this would make Hc recursively enumerable
and this would imply that H is recursive.

Let C be a collection of subsets of N and B ⊆ N. Say that B is C-complete if:

(1) B ∈ C;
(2) for every A ∈ C we have that A ≤R B.

Theorem 25. For every α ∈ NN and let RE(α) be the collection of all subsets of
N which are recursively enumerable with respect to α. Then there is some RE(α)-
complete set.

Proof. Let T (e, x, u) be the primitive recursive set from Theorem 20 with the prop-
erty that A is recursively enumerable in α if and only if there is e ∈ N so that

x ∈ A ⇐⇒ ∃l T (e, x, α(l)),

and set

B = {〈m,n〉 | ∃l T (m,n, α(l))}

If A ∈ C then there is eA so that A = {n | 〈eA, n〉 ∈ B}, and therefore the map
n 7→ 〈eA, n〉 is the desired reduction. �

Definition 26. For every
˜
a we define the Turing jump

˜
a′ to be the degree [A]T

where A is any RE(α)-complete set, for some α ∈
˜
a.

Notice that:

• the definition does not depend on the choice of A since for every two RE(α)-
complete sets A,A′ we have that A ≤R A′ and A′ ≤R A;
•

˜
a′ is strictly above

˜
a since otherwise Hc

α(n) = ¬∃l T (n, n, α(l)) would be in
R(α) (since it is closed under complements) in particular, by the universality
of T there would be e so that Hc

α(n) = ∃l T (e, n, α(l)) for all n. But for n = e
this gives a contradiction.

We have:

˜
a <

˜
a′ <

˜
a′′ < . . .

Let [
˜
0 <

˜
0′] stand for the subposet of (D,≤T ) consisting of all degrees which are

between
˜
0 and

˜
0′. How complicated this is?

By a famous result there are incomparable Turing degrees [χA]T , [χB]T so that
both sets A,B are recursively enumerable. In fact the unique countable atomless
Boolean algebra embeds in the r.e. part of this interval.
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15. The arithmetic hierarchy

Set

Recursively enumerable sets ⇐⇒ Σ0
1

co-Recursively enumerable sets ⇐⇒ Π0
1

Recursive sets ⇐⇒ Σ0
1 ∩ Π0

1 ⇐⇒ ∆0
1

Notice that the Σ class above is closed under ∃-quantification, Π is closed under
∀-quantification and ∆ is closed under complement. Next:

Σ0
2 = {∃nP (x̄, n) | P ∈ Π0

1}
Π0

2 = {P c | P ∈ Σ0
2}

∆0
2 = Π0

2 ∩ Σ0
2

Of course we can keep on going by setting:

Σ0
n+1 = ∃Π0

n

Π0
n+1 = ¬Σ0

n+1

∆0
2 = Π0

n+1 ∩ Σ0
n+1

Remark. An easy induction shows that:

Π0
n ∪ Σ0

n ⊆ ∆0
n+1 = Π0

n+1 ∩ Σ0
n+1,

(for the inductive step show separately that Σ0
n ⊆ Σ0

n+1 and Π0
n ⊆ Σ0

n+1)
Before we connect this notions with the Turing degree complexity we point out

that definable relation from Section 1 check out to be the same as⋃
n

Σ0
n =

⋃
n

Π0
n =

⋃
∆0
n,

where the equality of these three follows from the previous remark. We will develop
this point of view in the next few weeks, replacing the word “definable ” from now
on with the standard term “arithmetic”.

Proposition 27. Here are some more properties:

(1) Σ0
n is closed under ∧,∨, bounded quantification, substitution by total recursive

functions, and by ∃-quantification;
(2) Π0

n is closed under ∧,∨, bounded quantification, substitution by total recursive
functions, and by ∀-quantification;

(3) ∆0
n is closed under ¬∧,∨, bounded quantification, and substitution by total

recursive functions
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Proof. Run induction on n. For n = 1 we have established all these properties in
math117a. Assume we have these properties for n we show them for n + 1. In fact
it suffice to show (1) since the rest follow easily by it. This is easy. For example
assume that

R1(x̄) = ∃nP1(n, x̄), R2(x̄) = ∃mP2(m, x̄),

where P1, P2 ∈ Π0
n. Then by inductive assumption P (m,n, x̄) = P1(n, x̄)∧P2(m, x̄) ∈

Π0
n and therefore R1 ∧R2 ∈ Σ0

n+1 since

(R1 ∧R2)(x̄) = ∃wP ((w)0, (w)1), x̄)

The rest follow similarly and are left to the reader. �

Proposition 28. Σ0
n and Π0

n have the enumeration property while ∆0
n does not.

Proof. For Σ0
n and Π0

n use again induction. We know it for n = 1. Consider Σ0
n+1.

For every k we want to find

W k+1(e, x1, . . . , xk) ∈ Σ0
n+1

that is universal for k-ary Σ0
n+1 relations. By inductive assumption find in Π0

n is a
universal relation Uk+2(e, y, x1, . . . , xk) for Π0

n relations and set

W k+1(e, x1, . . . , xk) := ∃yUk+2(e, y, x1, . . . , xk).

Then W k+1 is clearly Σ0
n+1 and universal since if R ∈ Σ0

n+1 is k-ary then

R(x̄) ⇐⇒ ∃yQ(y, x̄) ⇐⇒ ∃yUk+2(e, y, x1, . . . , xk), for some e.

The ∆0
n-case is an exercise. �

Corollary 29. (Exercise) We have that:

• Σ0
n and Π0

n are not closed under complements;
• Σ0

n is not closed under ∀-quantification;
• Π0

n in not closed under ∃-quantification;
• Π0

n ∪ Σ0
n ( ∆0

n+1, ∆0
n+1 ( Σ0

n+1, and ∆0
n+1 ( Π0

n+1.

Example 30. Let {ϕe} be an effective and acceptable enumeration of recursive
functions. Let C = {e | ϕe is total}. What is the complexity of C?

By effectiveness we have that C = {e | ∀x ∃y ϕ(e, x) = y}. So it is at most Π0
2.

Could it be below that? The answer is NO. It cannot be Σ0
2. In fact it is Π0

2-complete.
To see this let A be an arbitrary Π0

2 subset of N and show that A ≤R C:

x ∈ A ⇐⇒ ∀yB(x, y) ⇐⇒ ∀yf(x, y) ↓

for some B ∈ Σ0
1 or equivalently for some partial recursive f . Therefore there exists

e so that

x ∈ A ⇐⇒ ∀y(ϕ(e, x, y) ↓) ⇐⇒ ∀y
(
ϕ(S(e, x), y) ↓

)
As a consequence we have that x 7→ S(e, x) is a reduction from A to C.
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16. Post’s Theorem

Post’s theorem provides a bridge between the arithmetic hierarchy and the Turing
jump operation

˜
a 7→

˜
a′ when

˜
a is of the form

˜
0(n) :=

˜
0
′···′ n-many times

Theorem 31 (Post’s theorem). Let Cn be any Σ0
n-complete set. We have that:

(1) R ⊆ Nk is recursively enumerable in Cn if and only if R ∈ Σ0
n+1;

(2) R ⊆ Nk is recursive in Cn if and only if R ∈ ∆0
n+1;

Proof. Part (2) follows from part (1) since R being recursive relative to some C is
the same as both R and Rc being recursively enumerable with respect to C.

Assume now that R ∈ Σ0
n+1 then R(x̄) = ∃yP (y, x̄) with P ∈ Π0

n. But then
P c ≤R Cn, where P c is viewed as a subset of N via x̄ 7→ 〈x̄〉. But then P c ≤T Cn
which implies P ≤T Cn.

Conversely if R is in RE(Cn) then let α be the characteristic function of Cn and
by Kleene’s normal form we have for some e and some primitive recursive T that:

R(x̄) ⇐⇒ ∃mT (e, x̄, α(m)) ⇐⇒ ∃n
(
Seq(n)∧∀i < length(n)((n)i = α(i)∧T (e, x̄, n))

)
Notice that the part after ∃ is just a conjunction of Σ0

n and Π0
n and therefore it is

Σ0
n+1. Since Σ0

n+1 is closed under ∃ we are done. �

Corollary 32. With the notation above we have [Cn]T =
˜
0(n).

Proof. For n = 1 it follows by definition of
˜
0
′
. Assume that [Cn]T =

˜
0(n) and let

Cn+1 be a Σ0
n+1-complete set. By Post’s theorem this is a complete RE(Cn)-set and

therefore [Cn+1]T = [Cn]′T which by inductive hypothesis is (
˜
0(n))′ =

˜
0(n+1). �

Structures and definability
The definitions we gave in Section 1 were specific for that very concrete context.

In this section we develop some basic first order logic in the right formalism and in
great generality. The reader should treat this section entirely independently form
Section 1 and avoid fusing the common mix the terminology.

17. Syntax of first order logic

We would like to have a general framework to deal with issues of definability and
provability which can for various mathematical structures and theories.

Examples. Here are some structures we would like to study.

• The usual arithmetic structure of natural numbers: N = (N, 0, S,+, ∗, <),
where S(n) = n+ 1.
• The structure of our favorite group G = (G, e, ·).
• The structure of a linear or more generaly partial order P = (P,≤).

A formal language consists of an alphabet together with a set of rules which
form the syntactically correct expressions. Our alphabet will always contain the
following logical symbols:
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• infinitely many variables: x1 x2 x3 . . .
• negation, conjunction, existential quantifier: ¬ ∧ ∃
• equality: =
• a comma and the two parenthesis symbols: , ( )

The non-logical symbols specified each time by providing a collection:

L = {Ri}i∈I
⊔
{fj}j∈J

⊔
{ck}k∈K

• each Ri is a relation symbol of some arity ni ≥ 1;
• each fj is a function symbol of some arity mj ≥ 1;
• each ck is a constant symbol.

Terms will be used to represent elements (points) in the structure. At this point
however they are just syntactical objects defined inductively:

• a single variable symbol or a single constant symbol is a term;
• if t1, . . . , tn are terms and f is n-ary function symbol then the expression
f(t1, . . . , tn) is a term.

Formulas will be used in formulating statements between tuples of elements
in the structure. At this point however they are just syntactical objects defined
inductively:

• if t1, . . . , tn, t, s are terms and R is n-ary function symbol then the expressions
R(t1, . . . , tn) and = (s, t) (which we will most often write as s = t) are both
formulas which are more specifically called atomic formulas;
• if ϕ, χ are formulas and x some variable then the expressions ¬ϕ, (ϕ ∧ χ),

and ∃xϕ are formulas.

In what follows we are going to be using certain abbreviations. Here are some:

• We write (ϕ ∨ χ) for the formula ¬(ϕ ∧ χ)
• We write (ϕ⇒ χ) for the formula (¬ϕ ∨ χ)
• We write (ϕ⇔ χ) for the formula

(
(ϕ⇒ χ) ∧ (χ⇒ ϕ)

)
• We write ∀xiϕ for the formula ¬∃¬xiϕ

Example. For arithmetic the language L is Lar = {0, S,+, ∗,≤}. Terms in-
clude 0, xi, xj, S(0), S(S(0)), ∗(S(S(0)), x1), etc. However we will introduce abbre-
viations/conventions:

• We write 1, 2, 3, . . . for S(0), S(S(0)), S(S(S(0))), . . .;
• For expressions like ∗(xi, 3) and ∗(xi, 2) we simply write xi ∗ 3 and xi + 2

An example of a formula in arithmetic is: ∀x(0 < x⇒ ∃y(S(y) = x))

Definition 33. The scope of ∃xiϕ is ϕ. An occurrence of a variable xi in the
formula χ is is called bound if it occurs in a quantifier ∃xi or if it occurs in the
scope of some subformula ∃xiϕ of χ, (where what is a subformula is defined by
induction on the complexity of the formula χ). A sentence is any formula ϕ which
has no free variables.
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We will be using the notation ϕ(x1, . . . , xn) whenever the collection of all free
variables of ϕ is a subset (some times strict subset) of x1, . . . , xn.

18. Semantics of first order logic

Let L = {Ri}
⊔
{fj}

⊔
{ck} of arities ni, mj, and 0 respectively. A structure for

L is any tuple

A = (A, {RAi }, {fAj }, {cAk }), where:

• A is a non-empty set;
• RAi is a subset of Ani ;
• fAi : Ami → A is a function;
• cAi is any point of A.

The moment we interpret our language L by attaching it on A, terms, formulas,
and sentences inherit meaning.

A term t(x1, . . . , xn), whose free variables are among x1, . . . xn, becomes a function
tA : An → A defined by induction in the obvious way (think of polynomials):

• if t(x1, . . . , xn) is x2 then tA(a1, . . . , an) = a2 (is the projection in the second
coordinate);
• if t(x1, . . . , xn) is c then tA(a1, . . . , an) = cA is the constant map;
• t(x̄) is f(t1(x̄), . . . , tm(x̄)) then tA(ā) = fA(tA1 (ā), . . . , tAm(ā)).

Given now a formula ϕ(x1, . . . , xn) together with an assignment xi 7→ ai ∈M we
define inductively what does it mean for ϕ to hold of A, ā, notationally, A, ā |= ϕ:

• If ϕ is R(t1, . . . , tm) then A, ā |= ϕ if and only if (tA1 (ā), . . . , tAm(ā)) ∈ RA;
• If ϕ is (t1 = t2) then A, ā |= ϕ if and only if tA1 (ā) = tA2 (ā) as points in M ;
• A, ā |= ¬ϕ if and only if it is not the case that A, ā |= ϕ;
• A, ā |= ϕ ∧ χ if and only if both A, ā |= ϕ and A, ā |= χ;
• if ϕ is ∃xiχ then A, ā |= ϕ if and only if there is some bi ∈ M so that

the assignment (x1, . . . , xi−1, xi, xi+1, . . . xn) 7→ (a1, . . . , ai−1, bi, ai+1, . . . an)
we have that A, (a1, . . . , ai−1, bi, ai+1, . . . an) |= χ

We will use the alternative notation A |= ϕ(ā) for the statement A, ā |= ϕ(x̄).
For example in arithmetic N = (N, 0, S,+, ∗,≤) we know that

N |= there infinitely many primes

N |= ∀x∃y(x < y ∧ Prime(y))

N |= ∀x∃y(x < y ∧ 1 < y ∧ ∀z(∃w(w ∗ z = y)⇒ (z = 1) ∨ (z = y))))

Again in the language of arithmetic Lar = {0, S,+, ∗, <} consider the usual struc-
ture N as well as the structure A = (R, 0, e( ),+, ∗, <). If σ is ∀x∀y(x + S(y) =
S(x+ y)) then N |= σ while A 6|= σ, i.e., A |= ¬σ.
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Definition 34. Let A be a structure in L and Σ be a collection of sentences in L.
We say that A is a model of the theory Σ, notationally A |= Σ, if for all σ ∈ Σ
we have A |= σ.

Example. Consider the language L = {e, ∗} where e is a constant and ∗ is binary
function symbol and let Σ consist of the following sentences:

• ∀x∀y∀z(x ∗ (y ∗ z) = (x ∗ y) ∗ z)
• ∀x(x ∗ e = x ∧ e ∗ x = x)
• ∀x∃y(x ∗ y = e ∧ y ∗ x = e)

Then every L-structure A with A |= Σ, is a group and conversely if A is a group
with identity eA and multiplication given by ∗A then A |= Σ. In other words Σ is
the theory of groups.

Let Σ be a collection of sentences and σ be some sentence. We say that Σ logically
implies σ, and we write Σ |= σ, if for every structure A with A |= Σ, we have that
A |= σ. Notice that while this is a relation between syntactic objects (Σ and σ) it
is defined by “reflecting” on the realm of structures. It is therefore a “semantic”
relation between Σ and σ. Later we will define a purely syntactic relation between
Σ and σ denoted by Σ ` σ. For example, if Σ is the above theory of groups then:

Σ |= ∀a∀y∃x a ∗ x = y

A tautology is any sentence σ that is logically implied from Σ = ∅. Moreover, if
σ, τ are such, so that σ ⇔ τ is a tautology, then we say that σ and τ are logically
equivalent. Here are two examples of tautologies (where ck is a constant in L):

ck = ck, ∀x∀y ϕ(x, y)⇔ ∀y∀x ϕ(x, y).

Similarly we can say that a formula ϕ(x1, . . . , xn) is a tautology and that ϕ(x1, . . . , xn),
ψ(x1, . . . , xn) are logically equivalent if and only if ∀x1 · · · ∀xnϕ is a tautology and
∀x1 · · · ∀xn(ϕ⇔ ψ) is a tautology, respectively.

We can now show that every formula is logically equivalent to one that is of a
very specific form, known as prenex normal form. A formula χ is quantifier free
if ∃ does not appear in it (and therefore neither ∀ := ¬∃¬ appears in it). A formula
ϕ is in prenex normal form if it is of the form:

Q1y1 . . . Qnyn χ

where Qi ∈ {∃,∀}, yi 6= yj, and χ is quantifier free.
For example, the formula ∀x4∃x1∃x2((R(x3, x2) ∧ x1 = x4) ∨ ¬P (x5, x4)) is in

prenex normal form, while ∃x1∃x2((R(x3, x2) ∧ x1 = x2) ∨ ∀x4¬P (x5, x4)) is not.

Theorem 35. Every formula is logically equivalent to a formula that is in prenex
normal form.

Proof. We briefly sketch the idea behind the algorithm. Let ϕ be the formula under
consideration.

Step 1. List all subformulas of the form Qyψ(y, x̄) and replace y in Qy as
well as all free occurrences of y within ψ(y, x̄) with an entirely new variable which
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doesn’t appear anywhere in ϕ or in any other application of Step 1 to some different
subformula.

Step 2. Apply the following operations inducting on the construction of ϕ:

¬∃ψ −→ ∀¬ψ
¬∀ψ −→ ∃¬ψ

(ψ1 ∧ ∃ψ2) −→ ∃(ψ1 ∧ ψ2)

(∃ψ1 ∧ ψ2) −→ ∃(ψ1 ∧ ψ2)

(ψ1 ∧ ∀ψ2) −→ ∀(ψ1 ∧ ψ2)

(∀ψ1 ∧ ψ2) −→ ∀(ψ1 ∧ ψ2)

Notice that each time this operation is applied it lifts the position of the associated
quantifier in the inductive construction of ϕ one layer above without introducing
new quantifiers (therefore successive application will eventually terminate).

�

Example.

(∃xR(x, z) ∧ ¬∃zS(z, w)) ∧ ∃xP (x, u))

(∃x′R(x′, z) ∧ ¬∃z′S(z′, w)) ∧ ∃x′′P (x′′, u))

∃x′′(∃x′R(x′, z) ∧ ¬∃z′S(z′, w)) ∧ P (x′′, u))

∃x′′(∃x′R(x′, z) ∧ ∀z′¬S(z′, w)) ∧ P (x′′, u))

∃x′′
(
∀z′(∃x′R(x′, z) ∧ ¬S(z′, w))

)
∧ P (x′′, u))

∃x′′∀z′
(
(∃x′R(x′, z) ∧ ¬S(z′, w)) ∧ P (x′′, u)

)
∃x′′∀z′

(
∃x′(R(x′, z) ∧ ¬S(z′, w)) ∧ P (x′′, u)

)
∃x′′∀z′∃x′

(
(R(x′, z) ∧ ¬S(z′, w)) ∧ P (x′′, u)

)
If ϕ is in prenex normal form then we treat all consecutive existential quantifiers

as one block and all consecutive universal quantifiers as one block. We say that ϕ

is ∃n if ϕ = ∃x(1)
1 . . . ∃x(1)

k1
∀x(2)

1 . . . ∀x(2)
k2

. . . χ with n many blocks of quantifiers.
Similarly if ϕ starts with ∀ contains n-many blocks of quantifiers we say that ϕ is
∀n. In the above example, the last formula is ∀3. More generally if ϕ is an arbitrary
formula then we say that ϕ is ϕ is ∃n orϕ is ∀n if it is logically equivalent to a
formula ψ which is in prenex normal form and it is ∃n or ∀n, respectively.

Finding the least n so that ϕ is either ∃n or ∀n, gives as a handy measure of
complexity for the formula.

19. Definability

Fix a language L and an L-structure A = (A, {RAi }, {RAj }, {cAk }).
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A subset P of An is definable if there is a formula ϕ(x1, . . . , xn) so that

(a1, . . . , an) ∈ P ⇐⇒ A |= ϕ(a1, . . . , an),

for all ā ∈ An. We say that P is definable with parameters if there is a formula
ϕ(x1, . . . , xn, y1, . . . , yk) and a tuple (b1, . . . , bk) ∈ Ak so that

(a1, . . . , an) ∈ P ⇐⇒ A |= ϕ(a1, . . . , an, b1, . . . , bk),

for all ā ∈ An. Notice that if each bi in the parameters is definable, i.e., if {bi}
is definable then P is (simply) definable. A function f : An → A is definable, or
definable with parameters, if its graph is so.

Examples.

(1) If G = (G, eG, ∗G) is a group (see previous example) then one can define
inversion g 7→ g−1 by the formula ϕ(x, y) := (x ∗ y = e). The axioms of the
group imply that for every x there is a unique such y.

(2) Let L = ∅ and let A = (A) be any L-structure. With a little bit of work one
can see that the only definable subsets of A are ∅ and A. Similarly the only
definable with parameters subsets of A are the finite sets and the co-finite
sets.

(3) Consider the structureR = (R, 0R,+R, ∗R) to be the usual real numbers with
the usual operations. Notice that x < y is definable by ∃z(z 6= 0∧x+z2 = y).
So order is definable. Similarly we can define the successor x 7→ x + 1. It
is a theorem of model theory that A satisfies quantifier elimination, i.e., for
every formula ϕ(x̄) there is a quantifier free formula ψ(x̄) defining the same
set of Rn as ϕ. From that it follows that the only subsets of R definable
with parameters in A are the ones included in the Boolean algebra which
contains all intervals (a, b) with a, b ∈ R ∪ {+∞,−∞} and all finite sets. A
consequence of this is that we can find a “complete and recursive” collection
of sentences which axiomatize the theory of R.

Examples like A,R above are tame in that the definable sets in them are very
simple and we can understand the behavior of formulas via geometric means. The
situation with G (for certain groups) above and of N = (N, 0N, SN,+N, ∗N, <N) is
very different. These are wild structure where “geometry” steps back and recursion
theory enters the picture. In the next few weeks we will study definability in N .
Something that may seem paradoxical is that while R contains N as a “substruc-
ture” (up to definitional expansion, see example (3) above), R is tame while N is
wild. However notice that by the quantifier elimination result mentioned above N is
not definable in R . Therefore we cannot explicitly or implicitly ask questions in R
about N . Moreover, notice how easier is to answer in R questions which are fairly
hard to be answered in N such as:

∃x∃y∃z(x ∗ y ∗ x > 0 ∧ xn + yn = zn),

where xn stands for x ∗ · · · ∗ x (n-many times) for any fixed n > 2.
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20. A coarse study of definability in arithmetic

Consider the usual structure N = (N, 0, S,+, ∗, <) of arithmetic (for simplicity
we write 0, S, . . . for 0N , SN , . . .) as well as the structure Npr = (N,+) known as
Presburger arithmetic. In terms of the discussion in Section 19 N is on the wild
side while Npr is on the tame side. Before we prove the former we elaborate a bit
on the later.

The usual way method for proving that a structure A is on the tame side goes
through quantifier elimination. That is, if one shows that every formula ϕ(x̄) is
logically equivalent in A with some quantifier free formula χ(x̄) then the task of
understanding the definable sets is much easier (since quantifier free formulas are
“finitary statements.” Here logically equivalent with respect to A means that

A |= ∀x1 . . . ∀xn ϕ(x̄) ⇐⇒ χ(x̄).

so doesNpr have quantifier elimination? Well first notice that 0, <, S are definable in
Npr so we can expandNpr to the structureN+

pr = (N, 0, S,+, <) without changing the
definable sets. Even in this definitional expansion N+

pr has no quantifier elimination
because on can show that for every k ≥ 2 the formula

φk(x) ≡ ∃y (y =

k−times︷ ︸︸ ︷
x+ . . .+ x)

is not equivalent to a quantifier free formula. However that’s all! One can prove
that the structure N++

pr = (N, 0, S,+, <, 2N, . . . , kN, . . .) has quantifier elimination.
From that it follows that the definable subsets of N in N++

pr are precisely all sets A
which are eventually periodic (with possible period k = 0),i.e., there is some l > 0
and a k ≥ 0 so that for n ≥ l we have that n ∈ A if and only if n = l+mk for some
m ≥ 0. As a consequence, ∗ is not definable in N++

pr (and therefore neither in Npr)
since the set {n2 : n ∈ N} is not eventually periodic.

Exercise. Show that in N ′ = (N, S, ∗), where ∗ is the usual multiplication and
S is the successor, the usual addition operation + is definable.

The following theorem and its corollary illustrates the gap between tame and wild.
It also justifies as to why we called the collection of all sets in

⋃
n Σ0

n arithmetical.

Theorem 36 (Gödel). Every (partial) recursive function is definable in N . Every
recursively enumerable set is also definable in N .

Corollary 37. A set A ⊆ Nk is definable in N if and only if A ∈
⋃
n Σ0

n

Proof of Corollary. One direction is by the above theorem. The other direction is
from prenex normal form and the fact that quantifier free formulas of arithmetic
define recursive (in fact primitive recursive) subsets of Nk in N . �

We proceed now to the proof of Theorem 36.
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Proof of Theorem 36. It suffice to show the first since every r.e. set is the domain
of some recursive f and the domain of f is always definable from the graph by the
formula ϕ(x) ≡ ∃y f(x) = y.

This is done by induction. We show that simple maps are definable and that
the collection of definable functions is closed under composition, minimalization,
primitive recursion.

Simple maps. All projni : Nn → N, c0 : N → N, and S : N → N have definable
graphs given, respectively, by the formulas:

ϕ(x1, . . . , xn, y) ≡ y = xi, ϕ(x, y) ≡ y = 0, ϕ(x, y) ≡ y = S(x),

Composition. Let f(n1, . . . , nk) = h(g1(n̄), . . . , gm(n̄)) and assume that ψ(y1, . . . , ym, z)
defines (the graph of) h and ψi(x1, . . . , xk, y) defines the graph of gi, i = 1, . . . ,m.
Then the definition of f is given by the following formula ϕ(x1, . . . , xk, z) ≡
∃y1 . . . ∃ym

(
ψ1(x1, . . . , xk, y1) ∧ . . . ∧ ψm(x1, . . . , xk, ym) ∧ ψ(y1, . . . , ym, z)

)
.

Minimalization. Let f(n1, . . . , nk) = µn [g(n1, . . . , nk, n) = 0] and assume that
g is defined by ψ(x1, . . . , xk, x, y) then f is defined by ϕ(x1, . . . , xk, z) ≡

∃xψ(x1, . . . , xk, x, 0) ∧ ∀x′
(

(x′ < x) =⇒ ∃y
(
¬(y = 0) ∧ ψ(x1, . . . , xk, x

′, y)
))
.

Primitive Recursion. Assume now that f is the unique function given by

f(0, n̄) = g(n̄), f(i+ 1, n̄) = h(f(i, n̄), i, n̄),

where g is defined by ψ(x̄, x) and h is defined by χ(z, w, x̄, y). Then we have that f
is “defined” by ϕ(w, x1, . . . , xk, z) ≡

(w = 0 ∧ ψ(x̄, z)) ∨

∨
(
w > 0 ∧

w−many︷ ︸︸ ︷
∃l0 . . . ∃lw

(
ψ(x̄, l0) ∧ χ(l0, 1, x̄, l1) ∧ . . . ∧ χ(lw−1, w, x̄, lw) ∧ (lw = z)

))
,

where the i-th term in the above conjunction is just χ(li−1, i, x̄, li).
Of course this is not an actual formula since the number of existential quantifiers

depends on w. What Gödel did is to find a way to definably code any sequence
l0, . . . lm of natural numbers. We need a definable function γ(l, i) so that

∀m > 0∀l0, . . . , lm−1∃l
(
γ(l, i) = li, ∀i < m

)
We will actually find a definable function β(a, b, i) so that

∀m < 0 ∀l̄ ∃a ∃b
(
β(a, b, i) = li,∀i < m

)
So granted from the following lemmas such a function the proof is complete. �

Definition 38. By the Gödel’s β-function we mean the map

β(a, b, i) = rmd(a, 1 + (i+ 1)b),

i.e., the remainder of the division of 1 + (i+ 1)b with a.
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First observe that β is clearly definable by ϕ(x, y, w, z) ≡
∃q
(
x = q ∗ (S(0) + (w + S(0)) ∗ y) + z ∧ z < (S(0) + (w + S(0)) ∗ y)

)
Lemma 39. ∀m < 0 ∀ l0, . . . , lm−1 ∃a ∃b

(
β(a, b, i) = li,∀i < m

)
Proof. We will make use of the Chinese remainder theorem:

Claim (Chinese remainder theorem). If b0, . . . , bm−1 are pairwise relatively prime
then for every l0, . . . , lm−1 with li < di there is some l so that for all i < m we have
that li = rmd(l, bi).

Proof of Claim. Consider the map r : N → Nm with r(n) = (n0, . . . , nm−1), where
ni = rmd(l, bi). Notice that there are at most b = b0 ∗ . . . ∗ bm−1 possible r(n)’s. It
is enough to show that r is 1− 1 on {0, . . . , b− 1}. Otherwise there would be some
m < m′ < b with r(m) = r(m′). So bi|(m′−m) for all i. But since bi’s are relatively
prime we have that b0 ∗ . . . ∗ bm−1|m′ −m, a contradiction. �

We can now finish the proof of the lemma. We will set b = n! with n large enough
so that if we set bi = 1 + (1 + i)b for every i < m, we will have that:

(1) li < bi for all i
(2) bi and bj are relatively prime when i 6= j.
The first task is clearly achievable by picking large n. For the second task notice

that if for some prime p we have that p|bi and p|bj , with i < j say, then p|(j − i)b.
Having picked n large enough implies that p|b and therefore combining this with the
assumption p|bi we get p|1, a contradiction. �

A finer study of definability and Hilbert’s 10th problem
This section is motivated by the following two problems.
Problem 1. We saw in previous section that a set A ⊆ Nn is definable in N if

and only if it is arithmetical. However, both definable sets and arithmetical sets are
layered in natural hierarchies.

Definable: ∆0
1,Σ

0
1,Π

0
1, ∆0

2,Σ
0
2,Π

0
2, . . .

Arithmetical: ∃0,∀0, ∃1,∀1, ∃2,∀2, . . .

By definition we have that ∃0 = ∀0. Moreover, it is easy to see that for any A ∈ ∃0

there is a polynomial time algorithm which decides whether a given x̄ ∈ Nn is in A.
As a consequence ∃0 is a strict subset of the collection ∆0

1, of all recursive sets.
It follows that for every n we have that ∃n is a subset of Σ0

n and that ∀n is a subset
of Π0

n. It is not clear however whether these inclusions are strict. In particular, is it
the case that ∃1 = Σ0

1 or ∃1 ⊆ Σ0
n?

Problem 2. In the proceedings of the Second International Congress in Paris
on August 8, 1900 Hilbert announced the 23 problems which, in his opinion, would
shape mathematics for the next century. The 10th problem in this list was the
following:

“Is there an algorithm that decides if any given Diophantine equation
F (x̄) = 0 has an integer solution?”
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By a Diophantine equation we mean a polynomial F (x1, . . . , xn) ∈ Z[x1, . . . , xn]
with coefficients from Z. By an integer solution we mean a vector (k1, . . . , kn) ∈ Zn
so that F (k1, . . . , kn) = 0.

Both problems are addressed by Matiyasevich’s celebrated theorem:

Theorem 40 (Matiyasevich (1970)). Let A ⊆ Nn is Σ0
1 then there exists a polyno-

mial F (x1, . . . , xn, y1, . . . , ym) with integer coefficients so that for every ā ∈ Nn:

(a1, . . . , an) ∈ A ⇐⇒ ∃y1 ∈ N . . . ∃ym ∈ N F (a1, . . . , an, y1, . . . , ym).

Of course notice that by we can always pass terms of F having negative coefficients
on the other side so that F (x̄, ȳ) = 0 is equivalent with H(x̄, ȳ) = G(x̄, ȳ), and H,G
have coefficients from N.

Given Matiyasevich’s “representation” theorem we can solve both problems above.
Solution to Problem 1: ∃1 = Σ0

1. In fact notice that the above theorem says
something seemingly stronger, i.e., the quantifier free formula we are using in the
∃1 representation of A is just a polynomial no ¬ is used (or ∧,∨, but the later two
can be easily coded using polynomials). Therefore ∃n = Σ0

n and ∀n = Π0
n for all n.

Solution to Problem 2: No! First notice that having an algorithm determining
whether every diophantine equation has integer solutions is the same as having
an algorithm determining whether every diophantine equation has positive integer
solutions:

• F (x1, . . . , xn) = 0 has solutions in Z if and only if F ′(x1, . . . , xn) = 0 has
solutions in N where

F ′(x1, . . . , xn) = Πall combinations of ± F (±x1, . . . ,±xn)

• F (x1, . . . , xn) = 0 has solutions in N if and only if F ′(x̄, ȳ, z̄, w̄) = 0 has
solutions in Z where

F ′(x̄, ȳ, z̄, w̄) = F (x2
1 + y2

1 + z2
1 + w2

1, . . . , x
2
n + y2

n + z2
n + w2

n)

For the later we use Lagrange theorem that every positive integer is the sum of four
squares. Let now A ∈ Σ0

1 \∆0
1. Then by Matiyasevich’s theorem A is of the form

∃y1 . . . ∃ym F (a1, . . . , an, y1, . . . , ym),

and therefore, if there was an algorithm deciding when every Diophantine equation
has solutions in N, then we could use it to show that A is recursive, contradicting
that A 6∈ ∆0

1.
Another interesting corollary of the above theorem is the following:

Corollary 41. If A ⊆ N is recursively enumerable then there exists a polynomial
F (x̄) ∈ Z(x̄) so that:

A = {F (x̄)|x1, . . . , xn ≥ 0} ∩ N
In particular, various sets such as the collection of prime numbers are presicely the
positive range of the positive domain of some polynomial.

Proof. Exercise. �
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The proof of Matiyasevich theorem is long and it would take 2-3 weeks to give
complete details. Here we will provide just a sketch which illustrates the main ideas
and the various tricks involved in the proof.

21. Reduction to exponential Diophantine

Definition 42. A set A ⊆ Nn is Diophantine if there exists a polynomial F (x̄, ȳ)
with integer coefficients so that for ā ∈ Nn we have that

ā ∈ A ⇐⇒ ∃ȳ F (ā, ȳ) = 0

A partial map f : Nn → N is Diophantine if its graph is, as a subset of Nn+1.

If A is Σ0
1 then the partial map f whose domain is A and f(ā) = 0 is recursive so

it will be enough to prove (sketch the proof) of the following theorem

Theorem 43 (Reformulation of Matiyasevich Theorem). Every partial recursive
function f : Nn → N is Diophantine.

Let’s run the usual proof by induction on the complexity of the definition of f
to see what closure properties we need to establish for the class of all Diophantine
functions.

Step 1 c0, projni , S are all Diophantine by using a dummy variable:

∃z(y = 0), ∃z(y = xi), ∃z(x+ 1− y = 0),

Step 2 f(x̄) = g(h1(x̄), . . . , hm(x̄)), then f(x̄) = y if and only if

∃ȳ(∧i≤mhi(x̄) = yi ∧ g(ȳ) = y)

Need. Closure under ∃ and ∧.
Step 3 f(x̄) = µy[g(x̄, y) = 0] then f(x̄) = y if and only if

g(x̄, y) = 0 ∧ ∀z < y ∃w
(
(g(x̄, z) = w) ∧ (w > 0)

)
Need. w > 0 is Diophantine and closure under bounded quantifiers ∀x < y.
Step 4 f(0, x̄) = g(x̄) and f(i+ 1, x̄) = h(f(i, x̄), i, x̄) then f(i, x̄) = y iff

(i = 0 ∧ y = g(x̄)) ∨(
i > 0∧∃a∃b

(
(g(x̄) = β(a, b, 0))∧(y = β(a, b, i))∧∀j < ij+1 = h(β(a, b, j), j, x̄)

))
Need. β is Diophantine, and closure under ∨ and under substitution by Diophan-

tine functions.
So the theorem will be proved once we prove (sketch the proof of) the following

lemma.

Lemma 44. The collection of Diophantine sets contains the relations x < y, x ≡ y
mod z, and Gödel’s function β, and it is closed under ∨,∧,∃,∀x < y and under
substitution by Diophantine maps.
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Proof. Everything is easy and it is left as an exercise except ∀x < y which is hard
and which we are going to analyze in what follows.

For example notice that (∃ȳF (x̄, ȳ) = 0)∨ (∃z̄G(x̄, z̄) = 0) is simply equivalent to
∃ȳ∃z̄

(
F (x̄, ȳ)∗G(x̄, z̄) = 0

)
, and the product of two polynomials is a polynomial. �

The next lemma shows that we can reduce the problem of showing that ∀x ≤ y is
Diophantine to the problem of showing that certain functions which are fusions of
“exponentiation” and n 7→ n! are Diophantine. It will be convenient for purposes of
indexing to work with ∀x(1 ≤ x ≤ y) rather than ∀x ≤ y. Since Diophantine sets
are closed under ∧ this is not a simplification in substance.

Lemma 45. Let A be the set of all (x1, . . . , xn, t) ∈ Nn+1 with the property that

∀k(1 ≤ k ≤ t) ∃y1, . . . , ym f(x1, . . . , xn, k, y1, . . . , ym) = 0,

for some polynomial f with integer coefficients. Then (x̄, t) ∈ A if and only if, for
this (x̄, t), the following system has a solution for some value of Y,N,K, Y1, . . . , Ym:

(1) N > c ∗ (x1 ∗ · · · ∗ xn ∗ t ∗ Y )d;
(2) 1 +KN ! = Πt

k=1(1 + kN !);
(3) f(x1, . . . , xn, K, Y1, . . . , Ym) ≡ 0 mod (1 +KN !);
(4) Πj≤Y (Yi − j) ≡ 0 mod (1 +KN !), and Y < Yi, for all i ∈ {1, . . . ,m}.

Where c, d are some fixed constants which depend only on f .

Proof. Recall Gödel’s β map which was defined by the assignment (a, b, i) 7→ (a
mod 1 + (i + 1)b). Because of the bounds of the index k it would be good to work

with the map β̃ which sends (a, b, i) to (a mod 1 + ib)
We first prove the variant of the Lemma where condition (4) is replaced with

(4’) β̃(Yi, N !, k) ≤ Y for every i ∈ {1, . . . ,m} and k ∈ {1, . . . , t}.
The set A(x̄, t) = ∀k(1 ≤ k ≤ t) ∃ȳ f(x̄, k, ȳ) = 0 can be informally rewritten as:

(?) ∃ȳ(1) · · · ∃ȳ(k) · · · ∃ȳ(t)

t∧
k=1

f(x̄, k, ȳ(k)) = 0

Of course this is not in Diophantine form because the number of quantifiers and the
number of conjunctions is not constant but depends on t.

For each i with 1 ≤ i ≤ m we will use the variable Yi and the β̃-map to code the

vector (y
(1)
i , . . . , y

(k)
i , . . . , y

(t)
i ) where

ȳ(1) = (y
(1)
1 , . . . , y

(1)
i , . . . , y(1)

m ), · · · , ȳ(t) = (y
(t)
1 , . . . , y

(t)
i , . . . , y

(t)
m )

In particular, by a careful reading of the proof of Lemma 39 notice that if N ≥
max{t, y(1)

i , . . . , y
(t)
i } then we can always find arbitrary large natural numbers to set

Yi equal to, so that y
(k)
i = β̃(Yi, N !, k). In particular:

Yi ≡ y
(k)
i mod (1 + kN !)
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and as a consequence for every k we have that:

(5) f(x̄, k, Y1, . . . , Ym) ≡ f(x̄, k, y
(k)
1 , . . . , y(k)

m ) ≡ 0 mod (1 + kN !)

This deals with the first problem, i.e., the unboundedly many ∃ quantifiers. Next
we turn the ∧tk=1 into the single equation (3) where K is specified in (2).

Claim. If K is the unique natural number specified by (2) then for every k we have

K ≡ k mod (1 + kN !)

Proof of Claim. Notice that (1+KN !)− (1+kN !) ≡ 0 mod (1+kN !) holds. Since
both terms are multiples of (1 + kN !). This implies the claim. �

By equation (5) we now have that f(x̄, K, Y1, . . . , Ym) ≡ 0 mod (1 + kN !), and
since (1 + kN !)’s are relatively prime we have that

f(x̄, K, Y1, . . . , Ym) ≡ 0 mod (1 +KN !)

So far we have shown that if (x̄, t) ∈ A, i.e., if there are ȳ(1) . . . ȳ(t) so that together
with x̄ they satisfy (?) then there are Y1, . . . , Ym, K,N satisfying conditions (2) and

(3). We haven’t introduced Y yet but as long as it satisfies Y > max{y(k)
i | k ≤

t, i ≤ m} then (4’) clearly holds and (1) clearly works for any c, d as long as we pick
N large enough (this doesn’t affect the argument so far).

We need though (1), (4’) to be able to prove the converse. To see this, as-
sume that for some (x̄, t) there are Y1, . . . , Ym, K,N satisfying (2) and (3). We
have f(x̄, K, Ȳ ) ≡ 0 mod (1 +KN !) and therefore f(x̄, K, Ȳ ) ≡ 0 mod (1 + kN !)

which implies f(x̄, k, y
(k)
1 , . . . , y

(k)
m ) ≡ 0 mod (1 + kN !) where y

(k)
i is defined to be

β̃(Yi, N !, k). But can we remove the mod(1 + kN !) part?

We would if f(x̄, k, y
(k)
1 , . . . , y

(k)
m ) was forced to be smaller than (1 + kN !). Since

f is a polynomial we can always find c, d so that

|f(x̄, k, ȳ(k))| < c(x̄ ∗ t ∗ Y )d,

and conditions (1) and (4’) now guarantee the required.
Exercise. Show that (1),(2),(3),(4) hold for some Y,N,K, Y1, . . . , Ym if and only

if (1),(2),(3),(4’) hold for some Y,N,K, Y1, . . . , Ym �

Notice that the conditions (1) and (3) are Diophantine. For (2) and (4) it suffices
to show that the maps x 7→ x! and (r, x) 7→

(
r
x

)
for r ≥ x are Diophantine. For

example notice that (4) can be rewritten as

Y !

(
Yi − 1

Y

)
,

and a similar idea (but more complicated) reduces (2). It is time to use Matiyase-
vich’s Lemma whose proof we are going to discuss in the next section.

Lemma 46 (Matiyasevich’s Lemma). The map (x, y) 7→ xy is Diophantine.

Having this we can prove the following lemma.
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Lemma 47. The maps x 7→ x! and (r, x) 7→
(
r
x

)
for r ≥ x are Diophantine.

Proof. Notice that x! = limr→∞
rx

(r
x)

since for fixed x and r ≥ x we have that:

rx(
r
x

) =
rx

r!
x!(r−x)!

= x!

(
r

r

r

r − 1
· · · r

r − x+ 1

)

So assuming we know how large r we have to pick then we can define x! =

⌊
rx

(r
x)

⌋
,

that is

x! = y ⇐⇒ y

(
r

x

)
≤ rx < (y + 1)

(
r

x

)
.

So we have reduced the problem of showing that x 7→ x! is Diophantine to the
problem of showing that (r, x) 7→

(
r
x

)
is Diophantine and the problem of finding

large enough r in a Diophantine way from x.
Exercise A. Show that choosing r = (2x)x+1 + 1 solves the last problem, or

find some other Diophantine (modulo Matiyasevich’s Lemma) function of your own
preference for choosing such large r.

Exercise B. Show that (r, x) 7→
(
r
x

)
, for r ≥ x, is Diophantine. �

Notice that we have already proven that recursively enumerable sets are the same
as “exponential Diophantine.” This result is due to David-Putnam-Robinson.

In fact Julia Robinson proved that if any fixed Diophantine set A ⊂ N2 has one
coordinate growing faster than any power of the other but slower than xx then all
r.e. sets are Diophantine.

22. Exponential is Diophantine

We want to prove Matiyasevich’s Lemma that the map (a, n) 7→ an is Diophan-
tine. First we show that it suffice to find some Diophantine function that is “ap-
proximately exponential”

Lemma 48. Assume that we have some Diophantine map (a, n) 7→ y(a, n) with the
property that for every a > 1 we have that

(2a− 1)n ≤ y(a, n+ 1) ≤ (2a)n

Then the map (a, n) 7→ an is Diophantine.

Proof. Notice that for any N ≥ 1 we have that

an
(
1− 1

2Na
)n =

(2Na− 1)n

(2N)n
≤ y(Na, n+ 1)

y(N, n+ 1)
≤ (2Na)n

(2N − 1)n
= an

(
1− 1

2N

)−n
So, for very large N we have that:

an − 1 <
y(Na, n+ 1)

y(N, n+ 1)
< an + 1
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So we want to be able to compute some lower bound for N , in a Diophantine way
from a, n, that makes the above inequalities work. Given that we have this lower
bound map (a, n) 7→ N(a, n) we can define m = an if and only if ∃N such that:

• (m−1)∗y(m,n+1) < y(Na, n+1) and y(Na, n+1) < (m+1)∗y(m,n+1);
• a|m (because there may be two integers in the above interval);
• N > N(n, a).

To find N(n, a) just calculate for which N we have an
(
1− 1

2N

)−n
< an + 1 and for

which N we have an− 1 < an
(
1− 1

2Na
)n. With some easy computations one can see

that setting N(n, a) = y(a+ 1, n+ 2) makes things work. �
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Recall from previous time that in order to show that every R.E. set is Diophantine,
it suffice to show that the function (a, n) 7→ an is Diophantine. In fact, by the last
lemma, it suffice to find some Diophantine map (a, n) 7→ y(a, n) with the property
that for every a > 1 we have that

(2a− 1)n ≤ y(a, n+ 1) ≤ (2a)n

A general Pell equation is an equation of the form:

x2 − dy2 = 1

where d is a parameter and x, y are variables. This equation has always the trivial
solution (x, y) = (1, 0). When d = �, i.e., d = r2 for some r, then this is the only
solution since (x− ry)(x+ ry) = 1 implies that x = 1. Whenever d 6= � then it has
a non-trivial solution but such solution is difficult to be found. In fact we know that
a certain weak-fragment of arithmetic known as Bounded Arithmetic cannot prove

∀d∃x∃y
(
d 6= � =⇒ (x2 − dy2 = 1 ∧ x > 1)

)
This will not be a problem because we are going to work with a certain family of
d’s where it is easy to find non-trivial solutions. First we will establish some basic
results for the arbitrary d.

Notice that over the reals, the expression x2−dy2 factors to (x−
√
dy)(x+

√
dy). It

will be convenient therefore to work in the integral domain Z[
√
d]. If α = (x+

√
dy)

then ᾱ = (x−
√
dy) is known as the conjugate of α. The norm ||α|| is simply the

number αᾱ, so the Pell equation is simply collecting all α’s with ||α|| = 1.
Of course since we work with non-negative integer solutions x, y we always have

that α = x+
√
dy ≥ 1. The converse is also true:

Lemma 49. If α = x+
√
dy ≥ 1 with ||α|| = 1 then 1 ≤ x and 0 ≤ y.

Proof. Since αᾱ = 1, we have that ᾱ = α−1. Therefore 0 < α−1 ≤ 1. The rest
follows from α + ᾱ = 2x and α− ᾱ = 2

√
dy. �

So the inequality 1 ≤ α together with ||α|| = 1 implies that both x, y are non-
negative. Hence the collection of all such α with is discrete and linearly ordered.
So if there is a non-trivial solution represented then there is one represented by the
smallest possible such γ. We call such γ the generator of solutions because as we
will see every positive integer solution will be represented by some power of γ.

Lemma 50. If ||α|| = 1 and ||β|| = 1 then ||αβ|| = 1. So the product of two reals
which represent a positive solution to the Pell equation also represents a positive
solution.

Proof. Check that α, β we have that αβ = ᾱβ̄. As a consequence we have that

||αβ|| = αβαβ = αβᾱβ̄ = αββ̄ᾱ = αᾱ = 1

�
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Lemma 51. Assume that γ is the generator of the solutions of x2− dy2 = 1 (which
exists if and only if there is some non-trivial solution). Then every solution (x, y) ∈
N2 is represented by some β = x+

√
dy with β = γn for some n.

Proof. By the previous lemma, since γ represents a solution, every power γn also
represents a solution.

Conversely, if ||β|| = 1 and 1 ≤ β then there is some n with γn ≤ β < γn+1. So,
1 ≤ βγ−n < γ. But the previous lemma we have that ||βγ−n|| = ||β|| · ||γ̄||n = 1.
Since γ is the smallest non-trivial solution βγ−n = 1 and therefore β = γn. �

For the general d it is difficult to locate the generator to the solutions of x2−dy2 =
1. We are going to work in the special case when d = a2 − 1. The Pell equation

(?) x2 − (a2 − 1)y2 = 1

has the non-trivial solution (a, 1) which cannot be but the smallest such. As a
consequence γ = a +

√
a2 − 1. We define now the maps (a, n) 7→ x(a, n) and

(a, n) 7→ y(a, n) where
(
x(a, n), y(a, n)

)
is the n-th solution to the Pell equation (?).

From the above discussion we have that:

x(n, a) + y(y, a)
√
a2 − 1 = (a+

√
a2 − 1)n,

i.e.,
(
x(0, a), y(0, a)

)
= (1, 0),

(
x(1, a), y(1, a)

)
= (a, 1), . . . We claim that (a, n) 7→

y(a, n) is the approximately exponential map we are looking for.

Lemma 52. For all n ≥ 1 we have that (2a− 1)n ≤ y(a, n+ 1) ≤ (2a)n.

Proof. Denote y(a, n) by yn. Notice that yn satisfies the following recurrence relation:

yn+2 = 2ayn+1 − yn.

This is a simple calculation. Given this, a simple induction and the initial y0 = 0,
y1 = a, y2 = 2a give the required. �

The last thing one needs to argue is that (a, n) 7→ y(a, n) is Diophantine. We will
give not details about the proof except the following crucial observation:

Lemma 53. y(a, n) ≡ n mod a− 1.

Proof. Since x(n, a) + y(y, a)
√
a2 − 1 = (a+

√
a2 − 1)n we have that

y(n, a) =
n∑

i=0,odd

an−i(a2 − 1)(i−1)/2

(
n

i

)
.

Notice now that all terms are zero except for when i = 1, for which we have that

nan−1 = · · · = nan−2(a−1)+nan−2 = nan−2(a−1)+nan−3(a−1)+ · · ·+(a−1)+n,

which (mod a− 1) is n. �
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As a consequence we can recover y(a, n) in a Diophantine way from (a, n) from
the perspective of the quotient (mod a − 1). To recover it completely one needs
to introduce more Diophantine restrictions. In particular one has the following
theorem.

Theorem 54. Let n > 1 and a > 2. Then the relation R(y, a, n) with y(a, n) = y
holds if and only if ∃x ∃X ∃Y ∃A ∃Z ∃W such that

(1) x2 + (a2 − 1)y2 = 1, y ≡ n mod a+ 1, y > n;
(2) X2 + (A2 − 1)Y 2 = 1, Y ≡ n mod A+ 1;
(3) A ≡ a mod Z;
(4) Y ≡ y mod Z;
(5) Z2 −W 2(A2 − 1) = 1;
(6) A ≡ 1 mod 2y;
(7) W ≡ 0 mod y2.

Gödel’s Incompleteness theorem

23. Deductive formal systems

A deductive formal system D for a formal language on alphabet L consists of

(1) a collection of formulas called the axioms;
(2) a finite set of rules D1, . . . , Dn where each Di is a relation Di(ϕ1, . . . , ϕni

, ψ)
between formulas, called rules of inference.

We say that ψ is a direct consequence of ϕ1, . . . , ϕni
via Di if Di(ϕ1, . . . , ϕni

, ψ). A
formal proof or deduction in D is a sequence ϕ1, . . . , ϕn so that each ϕi is either
an axiom of D or a direct consequence of earlier formulas in the list. A formal
theorem in D is any formula ϕ for which there exists a formal proof ϕ1, . . . , ϕn
with ϕn = ϕ. If ϕ is a formal theorem in D we write

`D ϕ
Similarly we have all the above notions relativised to any fixed collection of formulas.
In particular, if Σ is a collection of formulas then a formal proof from Σ is as before
but we moreover allow ϕi to be from Σ. If ϕ is a theorem from Σ then we write

Σ `D ϕ
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Here are some immediate properties:

(1) If Σ ⊆ Σ′ and Σ ` ϕthen Σ′ ` ϕ;
(2) If Σ ` ϕ then there exists some finite Σ0 ⊆ Σ so that Σ0 ` ϕ;
(3) if Σ′ ` ϕ and for all ψ ∈ Σ′ we have Σ ` ψ, then Σ ` ϕ.

24. A deductive formal system for first order logic

We now fixed a deductive system for first order logic. There are many other
equivalent ones but this one here has the advantage that there is a single deductive
rule: the modus ponens.

Recall the logical symbols for first order logic: ¬ ⇒ ( ) , ∀ = x1 x2 x3 . . .
Notice that we use⇒ instead of ∧ but of course we in the standard interpretation

we intend ⇒ and ∧ are definable from one another. If ϕ is a formula in L and
y1, y2, . . . , yn are any variables then the formula ∀y1 · · · ∀ynϕ is called a generaliza-
tion of ϕ.

Axioms. The logical axioms that we are going to use for the deductive formal
system of first order logic are all possible generalizations of all formulas of the form:

(1) Propositional axioms.
(a) ϕ⇒ (ψ ⇒ ϕ);
(b)

(
ϕ⇒ (ψ ⇒ χ)

)
⇒
(
(ϕ⇒ ψ)⇒ (ϕ⇒ χ)

)
;

(c) (¬ϕ⇒ ¬ψ)⇒
(
(¬ϕ⇒ ψ)⇒ ϕ

)
(2) Quantifier axioms.

(a) ∀x(φ⇒ ψ)⇒ (∀xφ⇒ ∀xψ)
(b) ϕ =⇒ ∀xϕ
(c) ∀xϕ ⇒ ϕ(t  x) where t is any term that is substitutable for x in ϕ,

i.e., no variable z occurring in t is in the scope of a quantifier ∀z in ϕ,
e.g., if ϕ ≡ ∃y(x 6= y) and t ≡ y then ∀xϕ 6⇒ ϕ(t x);

(3) Equality axioms.
(a) x = x, (x = y ∧ y = z)⇒ x = z, x = y ⇒ y = x;
(b) (y1 = z1 ∧ · · · ∧ yn = zn)⇒

(
R(ȳ)⇒ R(z̄)

)
where R is a relation in L;

(c) (y1 = z1 ∧ · · · ∧ yn = zn)⇒ f(ȳ) = f(z̄) where f is a function in L;
(d) c = c where c is a constant in L.

Rules of inference. We have only one rule of inference. That is

(Modus Ponens:) D(ϕ, ϕ⇒ ψ, ψ)

It is easy to see that all logical axioms are tautologies and that for every L-
structure A and any tuple ā of elements from A if A |= ϕ(ā) and A |= (ϕ⇒ ψ)(ā)
then A |= ψ(ā). In other words, we have that for every formula ϕ, if |= ϕ then ` ϕ.
Gödels completeness theorem says that for complete enough deductive systems as
the one we fixed, we have that the other direction is also true.
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Theorem 55 (Gödel’s completeness theorem). Let Σ be a collection of L-formulas
and let ϕ be any L-formula. We have that

Σ |= ϕ =⇒ Σ ` ϕ.
In particular, together with the above observation we have that Σ |= ϕ ⇐⇒ Σ ` ϕ.

A corollary of this and of the property (2) at the end of the previous subsection
is the compactness theorem.

Corollary 56. If Σ |= ϕ then there exists some finite Σ0 ⊆ Σ so that Σ0 |= ϕ.

The proof of Theorem 55 is given in math 6c but I am going to outline the main
ideas of the proof here. First one shows that Theorem 55 follows from what is known
as second form of Gödel’s completeness theorem.

Definition 57. Let Σ be a collection of L-formulas. We say that Σ is inconsistent
if it proves some formula ¬ϕ there ϕ is a tautology. Otherwise we say that Σ is
consistent.

For example Σ is inconsistent if it proves (x = x ∧ ¬x = x). In fact it is an
exercise to prove that if Σ is inconsistent then it proves every formula ψ. Notice
now that if for some L-structure A we have that A |= Σ then, by the definition of
a tautology and the symbol |=, we have that Σ is consistent. The second form of
Gödel’s completeness theorem says that the opposite is also true.

Theorem 58 (Gödel’s completeness theorem 2nd form). Let Σ be a collection of
L-formulas. If Σ is consistent then there exists some L-structure A with A |= Σ.

To see that the second Theorem implies the first let Σ and ϕ as in the first and
assume that Σ |= ϕ. We will show that Σ ` ϕ. Notice first that Σ |= ϕ implies
that Σ ∪ {¬ϕ} has no model. By the second incompleteness theorem we have that
Σ ∪ {¬ϕ} is inconsistent, i.e., Σ ∪ {¬ϕ} ` ¬x = x. We will now show that this
implies that Σ ` ¬ϕ =⇒ ¬x = x. But Σ ` ¬ϕ =⇒ x = x by axiom (1)(a) and
(3)(a). Therefore, by axiom (1)(c) we have that Σ ` ϕ.

Lemma 59 (Deduction Lemma). If Σ ∪ {ψ} ` χ, then Σ ` ψ ⇒ χ.

Proof. This is an induction on the length of the proof ϕ1, . . . , ϕn of χ out of Σ∪{ψ} `
χ.

It is left as an exercise.
�

As a consequence Theorem 58 implies Theorem 55. We can now sketch the proof
of the later.

Proof of Theorem 58. Let Σ be a consistent collection of L-formulas. We have to
construct somehow an L-structure A with A |= Σ. Since the only material we have
is syntactic the structure A will be constructed by syntactic material. This is done
in steps which I will describe but not prove.
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Step 1. One has to show that any consistent Σ can be extended to a Σ′ that is
complete, in that for every ϕ, either ϕ ∈ Σ or ¬ϕ ∈ Σ. So we can assume from now
on that Σ is complete.

Step 2. Then one adds witnesses to existential formulas. For every sentence σ
of the form ∃xϕ(x) so that Σ ` σ, we add a new constant cσ in the language and
extend L and Σ to L+,Σ+ with

L+ = {cσ : σ ≡ ∃xϕ(x),Σ ` σ},
Σ+ = {ϕ(cσ) : σ ≡ ∃xϕ(x),Σ ` σ}.

We repeat this step countably many times defining Ln = (Ln−1)+ and Σn = (Σn−1)+

and take L∞ and Σ∞ be the union.
Step 3. The domain of A is defined to be the quotient of the set of all terms in
L∞ containing no free variables, via the equivalence relation

t ' s ⇐⇒ Σ∞ ` t = s

By axioms (3)(a) we have that ' is indeed an equivalence relation. We define RA

by
([t1], . . . , [tn]) ∈ RA ⇐⇒ Σ∞ ` R(t1, . . . , tn)

By axioms (3)(b), (3)(c), (3)(d) this is well defined.
Step 4. By consistency of Σ it follows that A is indeed an L∞ structure and that
A |= Σ∞. Forgetting all interpretation of symbols in L∞ \ L we get the reduct A�L
which is an L-structure satisfying Σ.

�
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25. Coordinatization and Gödel-Tarski incompleteness

.
Draw Sent explain Σ |= σ and Σ ` σ
Fix LN explain tautologies from the point of view of |= and `.
Fix N and draw Th(N ).
Weak form of Gödel incompleteness (Gödel-Tarski): If Σ is “recursive” subset of

Th(N ) then there is σ ∈ Th(N ) with Σ 6` σ
As in the first section we want to turn various meta-mathematical statements of

arithmetic into statements about numbers. To do that we are going to “coordinatize”
the formal language of arithmetic. In fact, instead of restricting our attention to
LN = {0, S,+, ∗,≤} we will show how to “coordinatize” the arbitrary countable
formal language just in case we want to add more symbols later which do not appear
in LN .

Let L = {R1, R2, . . .} t {f1, f2, . . .} t {c1, c2, . . .} be a countable language. Let
also ¬,⇒,∀, (, ),Comma,=, x1, x2, x3, · · · be the logical symbols for first order logic.

Coding pure symbols. If a is any of the above symbols which is not a variable
or a constant we assign to it its Gödel number 〈a〉 which is going to be equal to
〈0, n〉 for some n (we pre-fix some informal correspondence n⇔ a). For example let

〈¬〉 := 〈0, 0〉, 〈⇒〉 := 〈0, 1〉 , · · · , 〈=〉 := 〈0, 6〉,

〈Rn〉 := 〈0, 6 + (2n− 1)〉
〈fn〉 := 〈0, 6 + 2n〉

Coding terms. Let 〈xn〉 := 〈1, 2n− 1〉, 〈cn〉 := 〈1, 2n〉, and the rest of the terms
defined inductively by

〈f(t1, . . . , tm)〉 := 〈1, 〈f〉, 〈t1〉, . . . , 〈tm〉〉
Coding formulas. Similarly by induction:

〈R(t1, . . . , tm)〉 := 〈2, 〈R〉, 〈t1〉, . . . , 〈tm〉〉

〈t = s〉 := 〈2, 〈=〉, 〈t〉, 〈s〉〉
Coding sequences of formulas. If ϕ0, . . . , ϕn is a sequence of formulas then

〈ϕ0, . . . , ϕn〉 := 〈〈ϕ0〉, . . . , 〈ϕn〉〉
Having coordinatized all these expressions we can now collect the sets

• VAR(n) ⇐⇒ n is the Gödel number of a variable;
• TERM(n) ⇐⇒ n is the Gödel number of a term;
• FORM(n) ⇐⇒ n is the Gödel number of a formula;
• SENT(n) ⇐⇒ n is the Gödel number of a sentence;
• LogicAX(n) ⇐⇒ n is the Gödel number of a logic axiom;
• ModusPO(k, l,m) ⇐⇒ FORM(k) ∧ FORM(l) ∧ FORM(m)∧(the formula

coded by m is the result of modus ponens from the formulas coded by k, l);
• PROOF(n) ⇐⇒ n is the Gödel number of a proof.
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These sets depend on the particular language we fixed, however they are always
primitive recursive sets and therefore definable in N . For example:

PROOF(n) ⇐⇒ Seq(n) ∧ (∀i < length(n)FORM((n)i))∧
∧∀i < length(n)(LogicAX((n)i) ∨ ∃j, k < i ModusPO((n)j, (n)k, (n)i)).

Definition 60. Let Φ be a collection of formulas. We say that Φ is recursive if

〈Φ〉 := {〈ϕ〉 : ϕ ∈ Φ}
is recursive as a subset of N.

Given any set Φ of formulas one defines PROOFΦ(n) to be the collection of all
numbers which code sequences of proofs from Φ. If Φ is recursive then, as above,
PROOFΦ(n) is recursive.

Definition 61. A theory is a collection T of sentences which is closed under im-
plication, i.e., if T ` σ then σ ∈ T . A theory T is recursively axiomatizable if
there is a recursive set of sentences Σ so that T = Conseq(Σ), where

Conseq(Σ) = {σ : σ is a sentence with Σ ` σ}
A collection of sentences Σ is complete if for every σ we have that Σ ` σ or Σ ` ¬σ.

Corollary 62. If Σ is a recursive set of formulas then 〈Conseq(Σ)〉 is recursively
enumerable. If Σ is moreover complete then 〈Conseq(Σ)〉 is recursive.

Proof.

n ∈ 〈Conseq(Σ)〉 ⇐⇒ SENT(n) ∧ ∃m (PROOFΦ(m) ∧ (m)length(m)−1 = n),

which is an R.E. definition. For the second part of the statement we can assume
that Σ is consistent because otherwise 〈Conseq(Σ)〉 is just SENT. But then

n ∈ 〈Conseq(Σ)〉 ⇐⇒ SENT(n) ∧ ¬∃m (PROOFΦ(m) ∧ (m)length(m)−1 = g(n)),

where g(n) is the Gödel code of the negation of the sentence coded by n. �

Theorem 63 (Gödel incompleteness theorem (weak form)). If Σ is a recursive
collection of sentences with N |= Σ then Σ is not complete.

Proof. If Σ is complete and Σ ⊆ Th(N ) then Conseq(Σ) = Th(N ). So if Σ is
recursive then 〈Th(N )〉 = {〈σ〉 : N |= σ} is R.E. and therefore arithmetical (i.e.,
definable in N ). But by Tarksi’s theorem this is not possible. �

Theorem 64 (Tarski). 〈Th(N )〉 = {〈σ〉 : N |= σ} is not arithmetical.

Proof. Notice that there is no binary relation U which is arithmetical and universal
for arithmetical subsets of N (since arithmetical sets are closed under complements
and primitive recursive substitution). But then if 〈Th(N )〉 is arithmetical, i.e., if
there is a formula ψ with

n ∈ 〈Th(N )〉 ⇐⇒ N |= ψ(n),
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we can let U(m,n) ⇐⇒ “m codes a formula of the form ϕ(x1) and Th(N ) |= ϕ(n).”
It is clearly universal but also arithmetical since the partial map g : N×N→ N with
(〈ϕ(x1)〉, n) 7→ 〈ϕ(n)〉 is recursive and therefore arithmetical. �

The subset 〈Th(N )〉 of N is therefore not in Σ0
n for any any n. What is its

complexity? Recall that for every n we have a Σ0
n-complete set Cn ⊆ N. Consider

the set
C = ⊕nCn := {〈n,m〉 : m ∈ Cn}.

It turns out that [C]T = [〈Th(N )〉]T and this Turing degree is denoted by
˜
0ω.
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26. Representability

The weak form of Gödel’s incompleteness was “centered” around Th(N ): part of
the assumption was that Σ ⊆ Th(N ). The original theorem of Gödel is stronger
in that it replaces this assumption with a weaker one. For that, we will need to
abandon the notion of “definability”, based on semantic notion N |= ϕ(ā), for a
syntactic notion which we will call representability.

We fix some L ⊇ {0, S}. This way, in every L-structure we have the term

n =

n−times︷ ︸︸ ︷
S(S(· · · (S(0)) · · · ),

for every n ≥ 0. Let Q be any fixed collection of sentences. A set R ⊆ Nn is called
representable in Q if there is a formula ϕ(x1, . . . , xn) in L so that

(k1, . . . , kn) ∈ R =⇒ Q ` ϕ(k1, . . . , kn), and

(k1, . . . , kn) ∈ Rc =⇒ Q ` ¬ϕ(k1, . . . , kn).

A partial function f : Nn → N is called representable in Q if there is a formula
ϕ(x1, . . . , xn, x) so that

Q ` ∀x1 . . . ∀xn∀y∀z
(
ϕ(x1, . . . , xn, y) ∧ ϕ(x1, . . . , xn, z)⇒ y = z

)
, and

f(k1, . . . , kn) = l =⇒ Q ` ϕ(k1, . . . , kn, l), for all k1, . . . , kn, l ∈ N

Theorem 65. Let L ⊇ {0, S} and let Q be any collection of sentences so that
every recursive relation and function are Q-representable. Then 〈Conseq(Q)〉 is not
Q-representable.

Proof. Same proof as Tarski’s theorem. �

Question. How large does Q have to be so that all recursive relations and
functions are Q-representable?

The following system due to Robinson is large enough. Notice moreover that it is
finite and it does not contain any instance of an induction axiom (except perhaps
the definition of +, ∗, and <).

Robinson System Q0. It consists of the following axioms in L = {0, S,+, ∗, <}:
(1) ∀x(S(x) 6= 0);
(2) ∀x

(
x 6= 0⇒ ∃y(S(y) = x)

)
;

(3) ∀x∀y(S(x) = S(y) =⇒ x = y);
(4) < is a linear ordering;
(5) ∀x∀y

(
x < S(y) ⇐⇒ (x = y ∨ x < y)

)
;

(6) ∀x(x = 0 ∨ 0 < x);
(7) ∀x(x+ 0 = x) ∧ ∀x∀y(x+ S(y) = S(x+ y));
(8) ∀x(x ∗ 0 = 0) ∧ ∀x∀y(x ∗ S(y) = x ∗ y + x).
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Exercise 66 (Wrong exercise need to assume slightly stronger axioms). Let A =
(A, 0A, SA,+A, ∗A, <A) be any structure with A countable and which satisfies the
axiom system Q0. Consider the “non-standard part” of A:

Ω = {a ∈ A : for all n ≥ 0 we have that A |= n < a}.

When A is the standard model of arithmetic N , then Ω = ∅. However, not every
structure satisfying Q0 has this property. Prove that:

(1) the domain A of A is the union of Ω and of the set {0A, 1A, 2A, . . .};
(2) if Ω 6= ∅, then the ordering <A restricted on Ω, i.e. (Ω, <A �Ω × Ω), is

isomorphic to “(Q, <)-many copies of (Z, <).” By (Q, <)-many copies of
(Z, <) we mean the ordering defined on Q× Z by

(p, a) < (q, b) ⇐⇒ (p < q) ∨
(
(p = q) ∧ a < b

)
where (Q, <) is the usual ordering on the rationals and (Z, <) is the usual
ordering on the integers. (Hint: By a theorem of Cantor (Q, <) is the unique
countable linear ordering that is dense and has no endpoints).

Theorem 67. Every recursive function and relation are representable in Q0.

As usual it is enough to show that all (partial) recursive functions areQ0-representable.
We will show actually that all min-recursive functions are Q0-representable which is
equivalent by HW. First we isolate in the next lemma some easy facts.

Lemma 68. For every fixed m,n, p ∈ N we have that:

(1) Q0 ` ∀x(x < n+ 1⇒ x = 0 ∨ x = 1 ∨ · · · ∨ n);
(2) if m+ n = p then Q0 ` m+ n = p;
(3) if m ∗ n = p then Q0 ` m ∗ n = p;
(4) if m 6= n then Q0 ` ¬m = n;
(5) if m < n then Q0 ` m < n.

Proof. We could of course produce an entirely syntactic proof of these facts based on
the axioms of the fixed deductive system, the axioms in Q0 and the definition of `.
However, completeness theorem Theorem 55) allows us to argue semantically. One
needs to show that for every structure A = (A, 0A, SA,+A, ∗A, <A) with A |= Q0 we
have that A |= σ, where σ is any of the statements (1)-(5). Checking that something
holds for all A with A |= Q0 is often a hard task, but for simple statements like
(1)-(5) things follow easily directly from the definition of |=.

(1) is proved by induction on n using axioms (5),(6) of Q0. (2) is proved by
induction on n using axiom (7) of Q0. (3) is proved by induction on n using axiom
(8) of Q0. (4) is proved by induction on n using axioms (1),(2),(3) of Q0. (5) is
proved by induction on n using axiom (6) of Q0.

For example let’s do (4).
Base case (n = 0): if m 6= 0, then m = S(m− 1). But then every A which

satisfies Q0(1) is bound to satisfy mA 6= 0A. So, by Gödel’s completeness (Theorem
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55), if m 6= 0 then

Q0 ` ¬(m = 0)

Inductive step (n = k + 1): if m = 0 then argue as in the base case. Otherwise
m = l + 1. So n = S(k) and m = S(l), and since n 6= m we have k 6= l as well.
But then by inductive hypothesis Q0 ` ¬(l = k) and therefore by Q0(3) we have
Q0 ` ¬(m = n). �

We can now proceed to the proof of Theorem 67.

Proof of Theorem 67. By HW it is enough to show that every min-recursive partial
function is representable. So we need to confirm that c0, projni ,+, ∗, χ= are rep-
resentable and that representable maps are closed under composition and under
minimalization.
c0 is representable. Let ϕ(x, y) ≡ y = 0. Then by completeness theorem

Q0 ` ∀x∀y∀z
(
ϕ(x, y) ∧ ϕ(x, z)⇒ y = z

)
,

since in every L-structure A in which A |= ϕ(x, y) and A |= ϕ(x, z), i.e., A |= y = 0
and A |= z = 0, we have that A |= y = z (because of the way we have tuned by
definition constants and equality with |=).

Similarly if for some k, l ∈ N we have c0(k) = l, then l = 0 and therefore Q0 `
ϕ(k, l), i.e., Q0 ` 0 = 0, that is Q0 ` 0 = 0, by the last logical axiom in our fixed
deduction system (or using completeness again).

Representable functions are closed under µ. Assume that we have a function
g(n1, . . . , nk,m) = l from Nk+1 to N that is Q0-representable by ϕg(x̄, y, z). Consider
the formula

ϕ(x̄, y) ≡
(
ϕg(x̄, y, 0) ∧ ∀w < y ∃z (z 6= 0 ∧ ϕg(x̄, w, z))

)
We claim that ϕ(x̄, y) Q0-represents f(n1, . . . , nk) = µm[g(n1, . . . , nk,m) = 0]. If in
some L-structure A with A |= Q0 we had that A |= ϕ(ā, b) and A |= ϕ(ā, c), for
some ā, b, c ∈ A, then by axiom Q0(4) we have b ≤ c of c ≤ b but then by formula
ϕ they cannot be but equal, so

Q0 ` ∀x̄∀y∀z
(
ϕ(x̄, y) ∧ ϕ(x̄, z)⇒ y = z

)
.

If now f(n1, . . . , nk) = m then g(n1, . . . , nk,m) = 0 but

g(n1, . . . , nk, 0) = l0, g(n1, . . . , nk, 1) = l1, . . . , g(n1, . . . , nk,m− 1) = lm−1.

with l0, . . . , lm−1 6= 0. But then by Q0-representability of g and (1) of the previous
Lemma we have that Q0 ` ϕ(n1, . . . , nk,m). �

27. Gödel’s incompleteness theorem

A careful reading of what we have done so far shows that we have already proved
the existential (i.e. non-constructive) strong version of Gödel’s incompleteness
theorem:
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Theorem 69 (Gödel’s 1st incompleteness theorem). Let Q be a recursive set of
axioms in the language of arithmetic so that Q0 ⊆ Q. If A is consistent then Q is
incomplete (i.e. there is some sentence σ so that neither Q ` σ nor Q ` ¬σ) and
undecidable (i.e. Conseq(Q) is not recursive)

This follows directly from Theorem 65, Corollary 62 and Theorem 67. To see
this, first notice that by Corollary 62, if Q was complete then Conseq(Q) would
be recursive. So it suffice to show that Conseq(Q) is not recursive. But if it was
recursive then by Theorem 67 it would be representable contradicting Theorem 65.
However, our task here is to produce an explicit statement σ out of Q that neither
σ nor ¬σ are provable by Q.

Before we do that we will state and prove the following useful corollary:

Corollary 70. If T is recursively axiomatizable and consistent theory which is “at
least as strong as Q0” then T is undecidable (i.e., not recursive) and incomplete.

Notice that we have not specified anything about the language in which we for-
mulated the theory T . Indeed this theorem is flexible from this point of view. We
need to define what “at least as strong” means and show how to deduce the corollary
from Theorem 69

Let L∗,L be two languages and let T be an L-theory. By an interpretation
L∗ y (L, T ) of L∗ into (L, T ) we mean

(1) an L formula πU(x) so that T |= ∃xπU(x);
(2) assignments R(x̄) 7→ πR(x̄), f(x̄) 7→ πf (x̄, y), c 7→ πc(x) from the rela-

tion,function, and constant symbols of L∗ to L-formulas such that:
(a) T |= ∀x̄

(
πU(x1) ∧ . . . ∧ πU(xn)⇒ ∃!y (πU(y) ∧ πf (x̄, y)

)
for every f ;

(b) T |= ∃!xπU(x) ∧ πc(x) for every constant c.

Given an interpretation L∗ y (L, T ) of L∗ into (L, T ) we have an assignment
A 7→ A∗ from L-structures A which satisfy the theory T , to L∗-structures A∗: given
A as above we construct A∗ as follows

• the domain A∗ of A∗ is {a ∈ A : A |= πU(a)}.
• the interpretations of R,F, c’s of L∗ are given by the πR, πF , πc’s

Example. Let L∗ = {0, S,+, ∗, <} be the language of arithmetic and let L =
{+, ∗}. If T = Th

(
(Z,+Z, ∗Z

)
, then we have the interpretation L∗ y (L, T ) given

by

πU(x) ≡ ∃x1∃x2∃x3∃x4(x2
1 + x2

2 + x2
3 + x2

4 = x)

π<(x1, x2) ≡ (x1 6= x2) ∧ ∃x(πU(x) ∧ x+ x+ 1 = x2)

π+(x1, x2, y) ≡ x1 + x2 = y, π∗(x1, x2, y) ≡ x1 ∗ x2 = y, π0(x) ≡ x+ x = x.

Given any interpretation L∗ y (L, T ) we can a complete one-way dictionary from
L∗-formulas ϕ to L-formulas ϕπ: the atomic L∗-formulas are assigned to the obvious
L-formulas, e.g., ϕ ≡ R(f(x), c) is translated to

ϕπ ≡ ∃y∃z(πf (x, y) ∧ ∧πc(z) ∧ πR(y, z)).
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Inductively then we proceed by setting

(¬ϕ)π := ¬ϕπ, (ϕ =⇒ ψ)π := ϕπ =⇒ ψπ, (∃xϕ)π := ∃x(πU(x) ∧ ϕπ).

By a simple induction we then have that if A∗ is the canonical L∗-structure con-
structed by A under L∗ y (L, T ) then for every L∗-formula ϕ and any ā in A∗ we
have that:

A∗ |= ϕ(ā) ⇐⇒ A |= ϕπ(ā)

Definition 71. Let Q be a collection of sentences in L∗ and let T be a theory in L
By an interpretation Qy T of Q into T we mean an interpretation L∗ y (L, T ),
under which T |= σπ, for all σ ∈ Q.

Definition 72. A theory T in L is at least as strong as Q in T if and only if there
exists an interpretation Q yπ T of Q into T so that the assignment 〈σ〉 7→ 〈σπ〉 is
recursive.

Notice that in order to check that 〈σ〉 7→ 〈σπ〉 is recursive it will suffice to check
that R,F, c 7→ πR, πF , πc is recursive which is automatically satisfied, for example,
when L∗ is finite.

We can now prove Corollary 70 from Theorem 69.

Proof of Corollary 70. It suffice to show that T is undecidable. This will imply
by Corollary 62 that it is also incomplete. Assume that T was decidable and let
Q = {σ | σπ ∈ T}. Notice that since T is decidable so is Q (since 〈σ〉 7→ 〈σπ〉 is
recursive) and since T is consistent so is Q. But Q also contains Q0, contradicting
Theorem 69. �

In what follows we assume throughout that L ⊇ {0, 1} and Q is a set of sentences
which represents all recursive relations/functions (e.g. Q0 ⊆ Q).

Lemma 73 (Gödel’s fixed point lemma). For every L-formula ϕ(x) there is a sen-
tence σ so that

Q ` σ ⇐⇒ ϕ(〈σ〉)

Proof. Consider the map

Subs(m,n)

{
〈ϕ(n)〉 if m = 〈ϕ(x)〉;
0 otherwise.

It is easy to see that it is recursive and therefore we can find a formula χ(x, y, z)
which represents the graph of Subs. Let ψ(x) ≡ ∀z

(
χ(x, x, z) ⇒ ϕ(z)

)
and set

k = 〈ψ(x)〉. We claim that the required sentence is σ ≡ ψ(k). What is the code for
σ? 〈σ〉 = 〈ψ(k)〉 = Subs(k, k). So Q ` ϕ(〈σ〉) is simply Q ` ϕ(Subs(k, k)). But

Q ` ϕ(Subs(k, k)) ⇐⇒ ∀z
(
χ(k, k, z)⇒ ϕ(z)

)
where the last expression is σ. �
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Assume now moreover that Q is recursive. Then ProofQ(n, p) ⇐⇒ “n codes a
sentence σ, p codes a proof of σ from Q” is recursive and therefore Q0-representable
by a formula, say ProofQ(x, y). Consider the formula

PrvblQ(x) ≡ ∃yProofQ(x, y),

and let σQ be the Gödel sentence for its negation, i.e.,

Q ` σS ⇐⇒ ¬PrvblQ(〈σQ〉).
Think of σQ as the statement “I am not provable.”

Here is the original theorem due to Gödel which assumes something more than
consistency, that is, ω-consistency, and we are going to define it during the proof:

Theorem 74. We have that:

(1) If Q is consistent then Q 6` σQ;
(2) If Q is ω-consistent then Q 6` ¬σQ;

Proof. For (1): assume that Q ` σQ. This by definition means that there is p ∈ N
so that ProofQ(〈σQ〉, p). By representability of ProofQ we have

Q ` ProofQ(〈σQ〉, p), and therefore Q ` PrvblQ(〈σQ〉), i.e., Q ` ¬σQ,
which contradicts consistency. Notice that having a witness p with respect to which
something is provable implies that “there exists some p” so that this thing is prov-
able. This just follows from the axioms of the deduction system we have.

For (2): assume that Q ` ¬σQ and we will try discover what assumption (which
we will call ω-consistency) we need to add in order to get a contradiction. But
Q ` ¬σQ implies that Q ` PrvblQ(〈σQ〉) i.e.,

(6) Q ` ∃yProofQ(〈σQ〉, y)

Assume now that from this this assumption implied that

(7) there is some p ∈ N so that Q ` ProofQ(〈σQ〉, p)
By representability this means that p codes an actual proof of σQ from Q which we
can now write it down and follow it ourselves in order to prove that Q ` σQ.

Of course if we had N |= in the place of Q `, (6) and (7) would be equivalent.
However the axioms in Q may force all the L-structures which satisfy Q to have
non-standard elements y (above all n) which satisfy some formulas which are not
satisfied by any n...
ω-consistency: Q is ω-consistent if for all ϕ(x), whenever Q ` ∃yϕ(y) then there

exists some p ∈ N so that ϕ(p) is not refutable, i.e., Q 6` ¬ϕ(p). Of course, if ϕ(y)
represents some total relation such as PrvblQ then by definition of representability
we have that Q ` ϕ(p). �

Gödel wanted to get rid of this additional assumption. Rosser found a way to do
it. For every Q as above consider the formula

ϕ(x) ≡ ∀y
(
ProofQ(x, y)⇒ ∃y′ ≤ y Proof¬Q(x, y′)

)
,
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where Proof¬Q(n, p) ⊆ N2 holds if and only if p codes a proof for the negation of the
sentence that is the code of n. The Rosser sentence for Q is the fixed point ρQ
of the formula ϕ(x).

Theorem 75 (Rosser). If Q is consistent then neither Q ` ρQ nor Q ` ¬ρQ;

Proof. Suppose that Q ` ρQ. Then

Q ` ∀y
(
ProofQ(〈ρQ〉, y)⇒ ∃y′ ≤ y Proof¬Q(〈ρQ〉, y′)

)
.

But since by assumption Q ` ρQ, we can find some p so that Q ` ProofQ(〈ρQ〉, p),
and therefore, combining this with the previous statement

Q ` ∃y′ ≤ p Proof¬Q(〈ρQ〉, y′).

By a lemma we proved, Q0 and therefore Q proves that everything that is < than
some p is of the form r (for some r < p). So

(8) Q ` Proof¬Q(〈ρQ〉, 0) ∨ Proof¬Q(〈ρQ〉, 1) ∨ . . . ∨ Proof¬Q(〈ρQ〉, p).

But from the other hand, by consistency we have that Q 6` ¬ρQ. So

Q 6` Proof¬Q(〈ρQ〉, 0), . . . , Q 6` Proof¬Q(〈ρQ〉, p).

So by representability of Proof¬Q we have that

Q ` ¬Proof¬Q(〈ρQ〉, 0), . . . , Q ` ¬Proof¬Q(〈ρQ〉, p), and therefore

Q ` ¬
(
Proof¬Q(〈ρQ〉, 0) ∨ . . . ∨ Proof¬Q(〈ρQ〉, p)

)
,

a contradiction with (8).
The second part of the statement we leave it as an exercise. �

This constructive proof (produces the witness σQ/ρQ to incompletenss) of the
strong form of Gödel’s incompleteness theorem gives us access to the second Gödel’s
incompleteness theorem:

Theorem 76 (Second Gödel’s incompleteness theorem). Let Q as a recursive set
of sentences with Q0 ⊆ Q and set ⊥ ≡ ∃x(x 6= x). Consider the sentence

CONQ ≡ ¬∃yProofQ(〈⊥〉, y).

If Q is ω-consistent (or Q=Peano arithmetic) and Q is consistent then Q 6` CONQ.

Proof. The actual proof is a bit technical although not difficult, see Boolos. Here
we just give the main idea.

One of the things we proved in Theorem 74 is that if Q is consistent then Q
does not prove σQ. Now because σQ was produced in a constructive fashion by
a specific formula, one can go and rewrite formally down the proof of Theorem 74
step by step and turn it into a theorem about Q itself! In other words, one can show
that

Q ` CONQ ⇒ ¬Prvbl(〈σQ〉)
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But since σQ is a fixed point for ¬Prvbl(x) we also have that

Q ` σQ ⇐⇒ ¬Prvbl(〈σQ〉).
Hence we have that

Q ` CONQ ⇒ σQ

But then if Q ` CONQ this would give Q ` σQ which is in contradiction with
Theorem 74. �

28. Undecidable problems in Peano Arithmetic

We showed that Robinson arithmetic Q0 is strong enough to produce the necessary
self-referential statements which show that it is incomplete. However, it is not
difficult to spot sentences which are neither provable nor disprovable from Q0. In
fact Q0 cannot even prove whether that + is commutative. Of course the point of
Theorem 69 is that any attempt to “complete” Q0 by adding a recursive collection
of axioms Q ⊇ Q0 on top will still be incomplete.

A theory of arithmetic that is strong enough to usually be able to prove most of
the things one needs is the extension of Q0 known as Peano arithmetic PA. For
that one further includes in PA all sentences of the form:

∀x̄
((
ϕ(x̄, 0) ∧ ∀z(ϕ(x̄, n)⇒ ϕ(x̄, n+ 1))

)
⇒ ∀zϕ(x̄, z)

)
Of course PA is still incomplete but finding explicit statements which unlike(?)
σQ, ρQ have mathematical (rather than meta-mathematical) content is hard.

Usual Ramsey statement: for every a, b, r ∈ N there is c ∈ N so that

c→ (b)ar

Stronger Ramsey statement: for every a, b, r ∈ N there is c ∈ N so that

c→∗ (b)ar .

That is not only the monochromatic set A will satisfy |A| ≥ a but moreover the
larger it is the further away away it has to start, i.e., |A| > minA.

These can be turned into statements in the language of arithmetic. While the
usual Ramsey statement is provable in PA the stronger one is not:

Theorem 77 (Paris-Harrington).

PA 6` ∀a, b, r ∃c
(
c→∗ (b)ar

)
.

Interestingly this has a fairly easy proof once we assume ZFC and we are able to
rely on the existence of infinite sets.

Goodstein sequences. Take any number n, express it in sum of powers of k
then express the exponents in powers of k, and the exponents of the exponents...
For example when n = 266 and k = 2:

266 = 256 + 8 + 2 = 28 + 23 + 21 = 22(2
20+20)

+ 222
0
+20 + 20
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A Goodstein sequence starts with any number n then writes it in pure base 2 ex-
pansion as above. Then replaces all 2s with 3s and subtracts 1 at the end from the
total expression. The result is the next term of the sequence... n = G1(n), G2(n), . . .
For example n = 19:

19 = 222
0

+ 220 + 20

G2(19) = 333
0

+ 330 + 30 − 1 = 333
0

+ 330 ∼ 1013

G3(19) = 444
0

+ 440 − 1 ∼ 10154, G4(19) ∼ 102000, G5(19) ∼ 103600, . . .

Theorem 78 (Goodstein). For every n there exists k so that Gk(n) = 0.

Theorem 79 (Paris-Kirby).

PA 6` ∀n ∃k Gk(n) = 0

Few words about ordinal ε0

29. Undecidable theories

We are going to present a technique due to Mostowski-Robinson-Tarski for show-
ing that various mathematical theories are undecidable. Using this technique we
are going to show that the theory of rings, groups, and graphs is undecidable. This
technique uses in an essential way the fact that there is a finitely axiomatizable
theory in the language of arithmetic (namely Q0) which satisfies Theorem 69 and
therefore Corollary 70.

Definition 80. Let A be an L-structure in some language L. We say that A
is strongly undecidable if any theory T (i.e., any set of L-sentences with T =
Conseq(T )) with A |= T is undecidable.

This in particular means that both extreme cases, i.e., the theory Th(A) of A as
well as the collection of all tautologies Taut(L) in L is undecidable.

Example: think expansions of Taut(Larithm) towards N vs towards the one point
structure in the language of arithmetic.

Theorem 81. The structure N of arithmetic is strongly undecidable.

Proof. Let T be a theory with N |= T and assume towards contradiction that it is
decidable. Let T ′ = {σ : (Q0

⋃
T ) ` σ}. Then this would also be decidable since by

the deduction lemma (Lemma 59) and the finiteness of Q0 we have that:

σ ∈ T ′ ⇐⇒ (Q0

⋃
T ) ` σ ⇐⇒ T `

∧
Q0 ⇒ σ ⇐⇒ (Q0 ⇒ σ) ∈ T,

and since 〈σ〉 7→ 〈(Q0 ⇒ σ)〉 is recursive. But this contradicts Theorem 69 since T ′

contains Q0. �
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Definition 82. Let A be some LA-structure and let B be some LB-structure. We
say that A is definable in B if

(1) A is a subset of B that is definable, possibly with parameters, in B, i.e.,
there is some formula ϕ(x, x1, . . . , xk) and b1, . . . , bk ∈ B so that

A = {b ∈ B : B |= ϕ(b, b1, . . . , bk)};
(2) each RA is similarly definable, possibly with parameters, in B;
(3) the graph of each fA is similarly definable, possibly with parameters, in B.

Theorem 83. Let A be some LA-structure that is definable in some LB-structure
B. If A is strongly undecidable and LA is finite then so is B.

Proof. First we show that we can assume without loss of generality that we can
reduce the problem to the same problem but with A being definable without pa-
rameters in some new B∗.

Notice that since LA is finite, we can find a finite subset P of B so that all
parameters necessary for the definitions of A,RAs, fAs are included in P . Let
L∗B = LB

⋃
{cb : b ∈ P} be a new language containing a constant cb for every b ∈ P .

Consider also the L∗B-structure B∗ to be B with cb being interpreted in B∗ as the
corresponding b ∈ P .

Claim. If B∗ is strongly undecidable then so is B.
To see this let T be a theory in LB with B |= T and consider the L∗B-theory T∗

with
T∗ = {σ∗ : T ` σ∗} =

= {ϕ(cb1 , . . . , cbk) : ϕ(x1, . . . , xk) is a formula in LB, T ` ϕ(cb1 , . . . , cbk)}
T∗ is a theory in L∗B with B∗ |= T∗ and therefore T∗ is undecidable (by assumption
of the claim). But notice that since the axioms in T do not contain any of the cb
constants any proof of ϕ(cb1 , . . . , cbk) from T introduces cb’s at some point via the
Deduction system axiom (2)(c). If instead of introducing cb there we introduced
some free variable and kept the proof the same we would prove ϕ(x1, . . . , xk) from
T . In other words,

ϕ(cb1 , . . . , cbk) ∈ T∗ ⇐⇒ T ` ϕ(cb1 , . . . , cbk) ⇐⇒ T ` ϕ(x1, . . . , xk) ⇐⇒
⇐⇒ T ` ∀x1 . . . ∀xk ϕ(x1, . . . , xk) ⇐⇒ ∀x̄ϕ(x̄) ∈ T

But then, since 〈ϕ(c̄)〉 7→ 〈∀x̄ϕ(x̄)〉 is computable, if T was computable so would T∗
be. Contradiction.

So we can assume without the loss of generality that c’s where already in LB, i.e.,
A was definable in B without parameters. But then this definition of A in B gives
an interpretation LA yπ (LB,Th(B)) under which

A |= σ ⇐⇒ B |= σπ.

For example we can set πU(x) to be the formula given by (1) of Definition 82.
Notice then that since A is non-empty we have that ∃xπU(x) ∈ Th(B) and therefore
Th(B) |= ∃xπU(x) (recall definition of interpretation)
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Given now any LB-theory TB with B |= TB we can form TA = {σ : σπ ∈ TB}.
Check: TA is a theory with A |= TA and that if TB was decidable then so would

TA be. �

Remark. In Definition 82 we were too restrictive when we demanded that in
order for A to be definable in B the domain A of A should be an actual subset of
the domain B of B. From now on we will say that A is definable in B when A
is isomorphic to some structure A′ which is definable in B, in the strict sense of
definition 82.

Example. (Z, 0, 1,+, ∗) is strongly undecidable since (N, 0, 1,+, ∗) is trivially
definable in it. As a consequence the theory of rings and the theory of integral
domains is undecidable. What about fields? Maybe the extra restrictions would
make the theory of fields decidable....

Theorem 84 (Robinson (her PhD thesis!)). (Z, 0, 1,+, ∗) is definable in (Q, 0, 1,+, ∗)
and therefore (Q, 0, 1,+, ∗) is strongly undecidable. As a consequence the theory of
fields is undecidable.

Sketch of proof. The proof uses the theory of quadratic forms in order to define Z
as a subset of Q. Consider the relation

R(a, b, k) ≡ ∃x∃y∃z(2 + abr2 + bz2 = x+ ay2).

Notice that R(a, b, k) holds in Q if and only if R(a, b,−k) holds. Think of a, b as
parameters. Robinson shows that Z is the only “inductive” set with respect to all
possible parameters. That is, the following formula defines Z:

k ∈ Z ⇐⇒ ∀a∀b
[(
R(a, b, 0)∧∀n

(
R(a, b, n) =⇒ R(a, b, n+1)

))
=⇒ R(a, b, k)

]
�

Theorem 85. There exists a strongly undecidable group (G, ·, 1) and therefore the
theory of groups is undecidable.

Proof. Let G be the group of all permutations of the countable set Z under compo-
sition. We will show that (Z, 0, 1,+, ∗) is definable (with parameters) in (G, ·, e).

Consider the permutation σ : Z→ Z with σ(k) = k+1 and let consider the subset
Z = {σi | i ∈ Z} of G. This will be the domain of the definition of Z in G. We
claim that Z = {τ ∈ G | τσ = στ} and therefore Z is definable in G (using the
parameter σ). To see this first notice that indeed, every element in Z commutes
with σ. Conversely, if τσ = στ , then τσi = σiτ . Evaluating at k = 0 we have that
τ(i) = i+ τ(0). Setting therefore i = τ(0) we get that τ = σj.

Since 0, 1 are definable by the constant e and the parameter σ in G, and since +
is definable simply by · in G we are left to show that multiplication of Z is definable
in G. We show instead that division is definable in G and then multiplication will
easily follow.
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Claim. i|j if and only if σi 6= e for every τ ∈ G we have that:

σiτ = τσi =⇒ σjτ = τσj.

The ⇒ direction is clear. For the other direction notice first that we can assume
that i 6= 0 because then if i = 0 and j 6= 0 we can easily cook up some τ which does
not commute with σj.

So assume that i 6= 0 and σiτ = τσi =⇒ σjτ = τσj holds for all τ and test
this on the unique τ with τ(k) = k + i if i|k and τ(k) = k otherwise. Notice that τ
commutes with σi so by assumption, σjτ = τσj. So we have

τ(k) + j = τ(k + j)

But then notice that if i 6 |j we can plug i for k above and get τ(i) + j = τ(i + j),
i.e., 2i+ j = i+ j, that is i = 0, a contradiction.

So we have that (Z, 0, 1,+, |) is definable in G. The rest follows from the exercise:
Exercise. Show that ∗ is definable in (Z, 0, 1,+, |). Hint: Notice that it suffice

to show that k 7→ k2 is definable since (i+ j)2 = i2 + 2ij + j2. �

Next we show that the theory of graphs is undecidable by producing a strongly
undecidable graph. By a graph we mean any structure G = (G,RG) where RG is
any symmetric, anti-reflexive relation.

Claim 1. There is a strongly undecidable structure A = (A, S) where S is a
quaternary relation.

Proof. Let A = Z and S = {(0, k, l, k + l) | k, l ∈ A} ∪ {(1, k, l, k ∗ l) | k, l ∈ A}. �

Claim 2. There is a strongly undecidable structure B = (B, T ) where T is a
binary relation.

Proof. Let B = A ∪ A2 ∪ {∞} and consider the relation T defined to be the union
of the sets

{
(
(a, b), (c, d)

)
| S(a, b, c, d)},

{
(
a, (a, b)

)
| a, b ∈ A} ∪ {

(
(a, b), b

)
| a, b ∈ A}, and

{
(
∞, a

)
| a ∈ A} ∪ {

(
(a, b),∞

)
| a, b ∈ A}.

We can now define A in B since A is definable in B by the formula T (∞, x) and S
is definable by

S(x, y, z, w) ⇐⇒ x, y, z, w ∈ A ∧ ∃p∃q
(
S(p,∞) ∧ S(q,∞)∧

∧S(x, p) ∧ S(p, y) ∧ S(z, q) ∧ S(q, w) ∧ S(p, q)

)
�

Theorem 86. There is a strongly undecidable graph G = (G,R).
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Proof. Let B = (B, T ) be strongly undecidable with T binary. For every b ∈ B
introduce three vertexes b1, b2, b3 and let

G = {b1, b2, b3 | b ∈ B} ∪ {s, t}.
R consists of all pairs of the form: (b1, b2), (b2, b1), (b3, b2), (b2, b3), (s, b1), (b1, s),
(t, b2), (b2, t), as well as all (b1, b

′
3), (b′3, b1) whenever T (b, b′).

Notice that B is definable in G (send b 7→ b1) by the formula R(s, x). Similarly T
is definable...

�
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